LZTR1: Genotype Expansion in Noonan Syndrome

Background: LZTR1 participates in RAS protein degradation, hence limiting the RAS/MAPK cascade. Pathogenic mutations in LZTR1 (MIM:600574) have been described in a few patients with Noonan syndrome (NS). Three patients with LZTR1 mutations of different genetic transmission and NS phenotype are herei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hormone research in paediatrics 2020-03, Vol.92 (4), p.269-275
Hauptverfasser: Güemes, María, Martín-Rivada, Álvaro, Ortiz-Cabrera, Neimar Valentina, Martos-Moreno, Gabriel Ángel, Pozo-Román, Jesús, Argente, Jesús
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: LZTR1 participates in RAS protein degradation, hence limiting the RAS/MAPK cascade. Pathogenic mutations in LZTR1 (MIM:600574) have been described in a few patients with Noonan syndrome (NS). Three patients with LZTR1 mutations of different genetic transmission and NS phenotype are herein characterized. Clinical Cases: Case 1 is a 5-year-old boy with NS phenotype. Sanger sequencing of PTPN11 and SOS1 identified no mutations. Whole exome sequencing (WES) detected a heterozygous missense mutation in LZTR1:c.742G>A (p.Gly248Arg) (exon 8, Kelch 4 functional domain). Bioinformatic algorithms predict a deleterious effect of this variant, previously described to cause NS. Case 2 is a 4-year-old boy with NS phenotype. Direct sequencing of 8 genes associated with NS identified no mutations. WES localized a homozygous missense mutation in LZTR1:c.2074T>C (p.Phe692Leu, exon 18). This mutation has not been reported before and is predicted to have a deleterious effect on the protein. Case 3 is an 8-year-old boy who shares NS phenotype with his mother. A multigene panel for RASopathies showed a heterozygous missense variant in LZTR1:c.730T>C (p.Ser244Pro) (exon 8; Kelch 4 functional domain) that was maternally inherited. This variant has not been previously described; however, in silico predictors classify it as deleterious. Familial segregation suggests its pathogenicity. Conclusions: The molecular approach for syndromic phenotypes associated with various genes should involve complete/updated panels or WES rather than gene-by-gene sequencing. RASopathy genetic panels should incorporate LZTR1. Patients with pathogenic mutations in LZTR1 exhibit a characteristic NS gestalt but variable cardiac, height, and neurodevelopment expressions, with recessive inheritance possibly associating with a more severe phenotype.
ISSN:1663-2818
1663-2826
DOI:10.1159/000502741