Design and characterization of dielectric filled TM 110 microwave cavities for ultrafast electron microscopy
Microwave cavities oscillating in the TM mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material, it becomes more compact and power efficient, facilitating the implementation in an electron microscope. However, the incorpo...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2019-08, Vol.90 (8), p.083703 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microwave cavities oscillating in the TM
mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material, it becomes more compact and power efficient, facilitating the implementation in an electron microscope. However, the incorporation of the dielectric material makes the manufacturing process more difficult. Presented here are the steps taken to characterize the dielectric material and to reproducibly fabricate dielectric filled cavities. Also presented are two versions with improved capabilities. The first, called a dual-mode cavity, is designed to support two modes simultaneously. The second has been optimized for low power consumption. With this optimized cavity, a magnetic field strength of 2.84 ± 0.07 mT was generated at an input power of 14.2 ± 0.2 W. Due to the low input powers and small dimensions, these dielectric cavities are ideal as electron-optical elements for electron microscopy setups. |
---|---|
ISSN: | 1089-7623 |
DOI: | 10.1063/1.5080003 |