Water splitting exceeding 17% solar-to-hydrogen conversion efficiency using solution-processed Ni base electrocatalysts and perovskite/Si tandem solar cell
Various noble-metal free electrocatalysts have been explored to enhance the overall water splitting efficiency. Ni-based compounds have attracted substantial attention for achieving efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts. Here, we show superior elec...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Various noble-metal free electrocatalysts have been explored to enhance the overall water splitting efficiency. Ni-based compounds have attracted substantial attention for achieving efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts. Here, we show superior electrocatalysts based on NiFe alloy electroformed by a roll-to-roll process. NiFe (oxy)hydroxide synthesized by an anodization method for the OER catalyst shows an overpotential of 250 mV at 10 mA cm-2, which is dramatically smaller than that of bare NiFe alloy with an overpotential of 380 mV at 10 mA cm-2. Electrodeposited NiMo films for the HER catalyst also exhibit a small overpotential of 100 mV at 10 mA cm-2 compared with that of bare NiFe alloy (550 mV at 10 mA cm-2). A combined spectroscopic and electrochemical analysis reveals a clear relationship between the surface chemistry of NiFe (oxy)hydroxide and the water splitting properties. These fully-solution processed outstanding catalysts facilitate superb overall water splitting properties due to enlarged active surfaces and highly active catalytic properties. We combined a solution processed monolithic perovskite/Si tandem solar cell with MAPb(I0.85Br0.15)3 for the direct conversion of solar energy into hydrogen energy, leading to the high solar-to-hydrogen efficiency of 17.52%. Based on the cost-effective solution processes, our photovoltaic-electrocatalysis (PV-EC) system has advantages over latest high-performance solar water splitting systems. |
---|---|
ISSN: | 1944-8252 |
DOI: | 10.1021/acsami.9b09344 |