Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes
A significant number of protein-protein interactions (PPIs) are mediated through the interactions between proteins and peptide segments, and therefore determination of protein-peptide interactions (PpIs) is critical to gain an in-depth understanding of the PPI network and even design peptides or sma...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2019-05, Vol.21 (19), p.1135-1145 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A significant number of protein-protein interactions (PPIs) are mediated through the interactions between proteins and peptide segments, and therefore determination of protein-peptide interactions (PpIs) is critical to gain an in-depth understanding of the PPI network and even design peptides or small molecules capable of modulating PPIs. Computational approaches, especially molecular docking, provide an efficient way to model PpIs, and a reliable scoring function that can recognize the correct binding conformations for protein-peptide complexes is one of the most important components in protein-peptide docking. The end-point binding free energy calculation methods, such as MM/GBSA and MM/PBSA, are theoretically more rigorous than most empirical and semi-empirical scoring functions designed for protein-peptide docking, but their performance in predicting binding affinities and binding poses for protein-peptide systems has not been systematically assessed. In this study, we first evaluated the capability of MM/GBSA and MM/PBSA with different solvation models, interior dielectric constants (
in
) and force fields to predict the binding affinities for 53 protein-peptide complexes. For the 19 short peptides with 5-12 residues, MM/PBSA based on the minimized structures in explicit solvent with the ff99 force field and
in
= 2 yields the best correlation between the predicted binding affinities and the experimental data (
r
p
= 0.748), while for the 34 medium-size peptides with 20-25 residues, MM/GBSA based on 1 ns of molecular dynamics (MD) simulations in implicit solvent with the ff03 force field, the GB
OBC1
model and a low interior dielectric constant (
in
= 1) yields the best accuracy (
r
p
= 0.735). Then, we assessed the rescoring capability of MM/PBSA and MM/GBSA to distinguish the correct binding conformations from the decoys for 112 protein-peptide systems. The results illustrate that MM/PBSA based on the minimized structures with the ff99 or ff14SB force field and MM/GBSA based on the minimized structures with the ff03 force field show excellent capability to recognize the near-native binding poses for the short and medium-size peptides, respectively, and they outperform the predictions given by two popular protein-peptide docking algorithms (pepATTRACT and HPEPDOCK). Therefore, MM/PBSA and MM/GBSA are powerful tools to predict the binding affinities and identify the correct binding poses for protein-peptide systems.
Determination of protein-peptide int |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c9cp01674k |