Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection

Acoustic devices are widely applied in telephone communication, human-computer voice interaction systems, medical ultrasound examination, and other applications. However, traditional acoustic devices are hard to integrate into a flexible system and therefore it is necessary to fabricate light weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-03, Vol.11 (13), p.5839-586
Hauptverfasser: Ding, Huijun, Shu, Xiaolan, Jin, Yukun, Fan, Taojian, Zhang, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acoustic devices are widely applied in telephone communication, human-computer voice interaction systems, medical ultrasound examination, and other applications. However, traditional acoustic devices are hard to integrate into a flexible system and therefore it is necessary to fabricate light weight and flexible acoustic devices for audible sound generation and detection. Recent advances in acoustic devices have greatly overcome the limitations of conventional acoustic sensors in terms of sensitivity, tunability, photostability, and in vivo applicability by employing nanomaterials. In this review, light weight and flexible nanomaterial-enabled acoustic devices (NEADs) including sound generators and sound detectors are covered. Additionally, the fundamental concepts of acoustic as well as the working principle of the NEAD are introduced in detail. Also, the structures of future acoustic devices, such as flexible earphones and microphones, are forecasted. Further exploration of flexible acoustic devices is a key priority and will have a great impact on the advancement of intelligent robot-human interaction and flexible electronics. Acoustic devices are widely applied in telephone communication, human-computer voice interaction systems, medical ultrasound examination, and other applications.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr09736d