Synchrotron X-radiolysis of l-cysteine at the sulfur K-edge: Sulfurous products, experimental surprises, and dioxygen as an oxidoreductant

In situ inventory of sulfurous products from the sulfur K-edge synchrotron X-radiolysis of l-cysteine in solid-phase and anaerobic (pH 5) and air-saturated (pH 5, 7, and 9) solutions without and with 40% glycerol is reported. Sequential K-edge X-ray Absorption Spectroscopic (XAS) spectra were acquir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-03, Vol.150 (10), p.105101-105101
Hauptverfasser: Frank, Patrick, Sarangi, Ritimukta, Hedman, Britt, Hodgson, Keith O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In situ inventory of sulfurous products from the sulfur K-edge synchrotron X-radiolysis of l-cysteine in solid-phase and anaerobic (pH 5) and air-saturated (pH 5, 7, and 9) solutions without and with 40% glycerol is reported. Sequential K-edge X-ray Absorption Spectroscopic (XAS) spectra were acquired. l-cysteine degraded systematically in the X-ray beam. Radiolytic products were inventoried by fits using the XAS spectra of sulfur model compounds. Solid l-cysteine declined to 92% fraction after a single K-edge XAS scan. After six scans, 60% remained, accompanied by 14% cystine, 16% thioether, 5.4% elemental sulfur, and smaller fractions of more highly oxidized products. In air-saturated pH 5 solution, 73% of l-cysteine remained after ten scans, with 2% cystine and 19% elemental sulfur. Oxidation increased with 40% glycerol, yielding 67%, 5%, and 23% fractions, respectively, after ten scans. Higher pH solutions exhibited less radiolytic chemistry. All the reactivity followed first-order kinetics. The anaerobic experiment displayed two reaction phases, with sharp changes in kinetics and radiolytic chemistry. Unexpectedly, the radiolytic oxidation of l-cysteine was increased in anaerobic solution. After ten scans, only 60% of the l-cysteine remained, along with 17% cystine, 22% elemental sulfur, and traces of more highly oxidized products. A new aerobic reaction cycle is hypothesized, wherein dissolved dioxygen captures radiolytic H• or eaq−, enters HO2•/O2•−, reductively quenches cysteine thiyl radicals, and cycles back to O2. This cycle is suggested to suppress the radiolytic production of cystine in aerobic solution.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5079419