Antibiotic-driven escape of host in a parasite-induced Red Queen dynamics

Winnerless coevolution of hosts and parasites could exhibit Red Queen dynamics, which is characterized by parasite-driven cyclic switching of expressed host phenotypes. We hypothesize that the application of antibiotics to suppress the reproduction of parasites can provide an opportunity for the hos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2018-09, Vol.5 (9), p.180693-180693
Hauptverfasser: Anzia, Elizabeth L., Rabajante, Jomar F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Winnerless coevolution of hosts and parasites could exhibit Red Queen dynamics, which is characterized by parasite-driven cyclic switching of expressed host phenotypes. We hypothesize that the application of antibiotics to suppress the reproduction of parasites can provide an opportunity for the hosts to escape such winnerless coevolution. Here, we formulate a minimal mathematical model of host–parasite interaction involving multiple host phenotypes that are targeted by adapting parasites. Our model predicts the levels of antibiotic effectiveness that can steer the parasite-driven cyclic switching of host phenotypes (oscillations) to a stable equilibrium of host survival. Our simulations show that uninterrupted application of antibiotic with high-level effectiveness (greater than 85%) is needed to escape the Red Queen dynamics. Interrupted and low level of antibiotic effectiveness are indeed useless to stop host–parasite coevolution. This study can be a guide in designing good practices and protocols to minimize the risk of further progression of parasitic infections.
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.180693