The impact of noise power estimation on speech intelligibility in cochlear-implant speech coding strategies
The advanced combination encoder (ACE™) is an established speech-coding strategy in cochlear-implant processing that selects a number of frequency channels based on amplitudes. However, speech intelligibility outcomes with this strategy are limited in noisy conditions. To improve speech intelligibil...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2019-02, Vol.145 (2), p.818-821 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The advanced combination encoder (ACE™) is an established speech-coding strategy in cochlear-implant processing that selects a number of frequency channels based on amplitudes. However, speech intelligibility outcomes with this strategy are limited in noisy conditions. To improve speech intelligibility, either noise-dominant channels can be attenuated prior to ACE™ with noise reduction or, alternatively, channels can be selected based on estimated signal-to-noise ratios. A noise power estimation stage is, therefore, required. This study investigated the impact of noise power estimation in noise-reduction and channel-selection strategies. Results imply that estimation with improved noise-tracking capabilities does not necessarily translate into increased speech intelligibility. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.5089887 |