Growth, structural and optical characterization of wurtzite GaP nanowires

Bulk gallium phosphide (GaP) crystallizes in the zinc-blende (ZB) structure and has an indirect bandgap. However, GaP nanowires (NWs) can be synthesized in the wurtzite (WZ) phase as well. The contradictory theoretical predictions and experimental reports on the band structure of WZ GaP suggest a di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2019-06, Vol.30 (25), p.254002-254002
Hauptverfasser: Maliakkal, Carina B, Gokhale, Mahesh, Parmar, Jayesh, Bapat, Rudheer D, Chalke, Bhagyashree A, Ghosh, Sandip, Bhattacharya, Arnab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bulk gallium phosphide (GaP) crystallizes in the zinc-blende (ZB) structure and has an indirect bandgap. However, GaP nanowires (NWs) can be synthesized in the wurtzite (WZ) phase as well. The contradictory theoretical predictions and experimental reports on the band structure of WZ GaP suggest a direct or a pseudo-direct bandgap. There are only a few reports of the growth and luminescence from WZ and ZB GaP NWs. We first present a comprehensive study of the gold-catalyzed growth of GaP NWs via metalorganic vapor phase epitaxy on various crystalline and amorphous substrates. We optimized the growth parameters like temperature, pressure and reactant flow rates to grow WZ GaP NWs with minimal taper. These wires were characterized using electron microscopy, x-ray diffraction, Raman scattering and photoluminescence spectroscopy. The luminescence studies of bare GaP NWs and GaP/AlGaP core-shell heterostructures with WZ- and ZB-phase GaP cores suggest that the WZ-phase GaP has a pseudo-direct bandgap with weak near-band-edge luminescence intensity.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ab0a46