The Cortical Network of Emotion Regulation: Insights From Advanced EEG-fMRI Integration Analysis

The ability to perceive and regulate emotion is a key component of cognition that is often disrupted by disease. Current neuroimaging studies regarding emotion regulation have implicated a number of cortical regions and identified several EEG features of interest, including the late positive potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2019-10, Vol.38 (10), p.2423-2433
Hauptverfasser: Nguyen, Thinh, Zhou, Tiantong, Potter, Thomas, Zou, Ling, Zhang, Yinchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to perceive and regulate emotion is a key component of cognition that is often disrupted by disease. Current neuroimaging studies regarding emotion regulation have implicated a number of cortical regions and identified several EEG features of interest, including the late positive potential and frontal asymmetry. Unfortunately, currently applied methods generally lack in the resolution necessary to capture focal cortical activity and explore the causal interactions between brain regions. In this paper, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data were simultaneously recorded from 20 subjects undergoing emotion processing and regulation tasks. Cortical activity with high-spatiotemporal resolution and accuracy was reconstructed using a novel multimodal EEG/fMRI integration method. A detailed causal brain network associated with emotion processing and regulation was then identified, and the network changes that facilitate different emotion conditions were investigated. The cortical activity of the ventrolateral prefrontal (VLPFC) and posterior parietal cortices depicted conditionally-sensitive spike and wave patterns evidenced in inter-regional communication. The VLPFC was found to behave as a main network source, with conditionally-specific interactions supporting emotional shifts. The results provide unique insight into the cortical activity that supports emotional perception and regulation, the origins of known EEG phenomena, and the manner in which brain regions coordinate to affect behavior.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2019.2900978