Patient-Specific Prediction of Abdominal Aortic Aneurysm Expansion Using Bayesian Calibration
Translating recent advances in abdominal aortic aneurysm (AAA) growth and remodeling (G&R) knowledge into a predictive, patient-specific clinical treatment tool requires a major paradigm shift in computational modeling. The objectives of this study are to develop a prediction framework that firs...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2019-11, Vol.23 (6), p.2537-2550 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2550 |
---|---|
container_issue | 6 |
container_start_page | 2537 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 23 |
creator | Zhang, Liangliang Jiang, Zhenxiang Choi, Jongeun Lim, Chae Young Maiti, Tapabrata Baek, Seungik |
description | Translating recent advances in abdominal aortic aneurysm (AAA) growth and remodeling (G&R) knowledge into a predictive, patient-specific clinical treatment tool requires a major paradigm shift in computational modeling. The objectives of this study are to develop a prediction framework that first calibrates the physical AAA G&R model using patient-specific serial computed tomography (CT) scan images, predicts the expansion of an AAA in the future, and quantifies the associated uncertainty in the prediction. We adopt a Bayesian calibration method to calibrate parameters in the G&R computational model and predict the magnitude of AAA expansion. The proposed Bayesian approach can take different sources of uncertainty; therefore, it is well suited to achieve our aims in predicting the AAA expansion process as well as in computing the propagated uncertainty. We demonstrate how to achieve the proposed aims by solving the formulated Bayesian calibration problems for cases with the synthetic G&R model output data and real medical patient-specific CT data. We compare and discuss the performance of predictions and computation time under different sampling cases of the model output data and patient data, both of which are simulated by the G&R computation. Furthermore, we apply our Bayesian calibration to real patient-specific serial CT data and validate our prediction. The accuracy and efficiency of the proposed method is promising, which appeals to computational and medical communities. |
doi_str_mv | 10.1109/JBHI.2019.2896034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30714936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8629977</ieee_id><sourcerecordid>2313781082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-3a5fbaa52c6b2b99550761d03cdf618b8de4378aef1780bb96dc5b245d3cac4f3</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYMottR-ABFkwJe-zJp_k0lehO1SbaVgQfso4SaTqSkzyZrMiPvtzbDbRc1LQs7vHu69B6HXBK8Iwer958vrmxXFRK2oVAIz_gydUiJkTSmWz5_eRPETdJ7zIy5Hli8lXqIThlvCFROn6PsdTN6Fqf66ddb33lZ3yXXeTj6GKvbV2nRx9AGGah3TVOR1cHPa5bG6-r2FkBfsPvvwUF3CzmUPodrA4E2CxeEVetHDkN354T5D9x-vvm2u69svn24269vact5ONYOmNwANtcJQo1TT4FaQDjPb9YJIIzvHWSvB9aSV2BglOtsYypuOWbC8Z2fow953O5vRdbYMlGDQ2-RHSDsdwet_leB_6If4S5d9YKGaYnBxMEjx5-zypEefrRsGCC7OWVPSKq4klqKg7_5DH-OcyoYKxUhpk2BJC0X2lE0x5-T6YzME6yU_veSnl_z0Ib9S8_bvKY4VT2kV4M0e8M65oywFVapt2R8A6aBL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313781082</pqid></control><display><type>article</type><title>Patient-Specific Prediction of Abdominal Aortic Aneurysm Expansion Using Bayesian Calibration</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Liangliang ; Jiang, Zhenxiang ; Choi, Jongeun ; Lim, Chae Young ; Maiti, Tapabrata ; Baek, Seungik</creator><creatorcontrib>Zhang, Liangliang ; Jiang, Zhenxiang ; Choi, Jongeun ; Lim, Chae Young ; Maiti, Tapabrata ; Baek, Seungik</creatorcontrib><description>Translating recent advances in abdominal aortic aneurysm (AAA) growth and remodeling (G&R) knowledge into a predictive, patient-specific clinical treatment tool requires a major paradigm shift in computational modeling. The objectives of this study are to develop a prediction framework that first calibrates the physical AAA G&R model using patient-specific serial computed tomography (CT) scan images, predicts the expansion of an AAA in the future, and quantifies the associated uncertainty in the prediction. We adopt a Bayesian calibration method to calibrate parameters in the G&R computational model and predict the magnitude of AAA expansion. The proposed Bayesian approach can take different sources of uncertainty; therefore, it is well suited to achieve our aims in predicting the AAA expansion process as well as in computing the propagated uncertainty. We demonstrate how to achieve the proposed aims by solving the formulated Bayesian calibration problems for cases with the synthetic G&R model output data and real medical patient-specific CT data. We compare and discuss the performance of predictions and computation time under different sampling cases of the model output data and patient data, both of which are simulated by the G&R computation. Furthermore, we apply our Bayesian calibration to real patient-specific serial CT data and validate our prediction. The accuracy and efficiency of the proposed method is promising, which appeals to computational and medical communities.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2019.2896034</identifier><identifier>PMID: 30714936</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Abdominal aortic aneurysm (AAA) ; Aneurysm ; Aneurysms ; Aorta ; Aortic Aneurysm, Abdominal - diagnostic imaging ; Aortic Aneurysm, Abdominal - pathology ; Aortic aneurysms ; Bayes methods ; Bayes Theorem ; Bayesian analysis ; bayesian calibration ; Calibration ; Computational modeling ; Computed tomography ; Computer applications ; Computer Simulation ; CT scan ; Data models ; Disease Progression ; Expansion ; growth and remodeling (G&R) computational model ; Humans ; Image Interpretation, Computer-Assisted - methods ; Patient-Specific Modeling ; patient-specific predictive modeling ; Patients ; Predictions ; Predictive models ; Tomography, X-Ray Computed ; Uncertainty</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-11, Vol.23 (6), p.2537-2550</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-3a5fbaa52c6b2b99550761d03cdf618b8de4378aef1780bb96dc5b245d3cac4f3</citedby><cites>FETCH-LOGICAL-c447t-3a5fbaa52c6b2b99550761d03cdf618b8de4378aef1780bb96dc5b245d3cac4f3</cites><orcidid>0000-0002-7532-5315 ; 0000-0001-5986-2260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8629977$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30714936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Liangliang</creatorcontrib><creatorcontrib>Jiang, Zhenxiang</creatorcontrib><creatorcontrib>Choi, Jongeun</creatorcontrib><creatorcontrib>Lim, Chae Young</creatorcontrib><creatorcontrib>Maiti, Tapabrata</creatorcontrib><creatorcontrib>Baek, Seungik</creatorcontrib><title>Patient-Specific Prediction of Abdominal Aortic Aneurysm Expansion Using Bayesian Calibration</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Translating recent advances in abdominal aortic aneurysm (AAA) growth and remodeling (G&R) knowledge into a predictive, patient-specific clinical treatment tool requires a major paradigm shift in computational modeling. The objectives of this study are to develop a prediction framework that first calibrates the physical AAA G&R model using patient-specific serial computed tomography (CT) scan images, predicts the expansion of an AAA in the future, and quantifies the associated uncertainty in the prediction. We adopt a Bayesian calibration method to calibrate parameters in the G&R computational model and predict the magnitude of AAA expansion. The proposed Bayesian approach can take different sources of uncertainty; therefore, it is well suited to achieve our aims in predicting the AAA expansion process as well as in computing the propagated uncertainty. We demonstrate how to achieve the proposed aims by solving the formulated Bayesian calibration problems for cases with the synthetic G&R model output data and real medical patient-specific CT data. We compare and discuss the performance of predictions and computation time under different sampling cases of the model output data and patient data, both of which are simulated by the G&R computation. Furthermore, we apply our Bayesian calibration to real patient-specific serial CT data and validate our prediction. The accuracy and efficiency of the proposed method is promising, which appeals to computational and medical communities.</description><subject>Abdominal aortic aneurysm (AAA)</subject><subject>Aneurysm</subject><subject>Aneurysms</subject><subject>Aorta</subject><subject>Aortic Aneurysm, Abdominal - diagnostic imaging</subject><subject>Aortic Aneurysm, Abdominal - pathology</subject><subject>Aortic aneurysms</subject><subject>Bayes methods</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>bayesian calibration</subject><subject>Calibration</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>CT scan</subject><subject>Data models</subject><subject>Disease Progression</subject><subject>Expansion</subject><subject>growth and remodeling (G&R) computational model</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Patient-Specific Modeling</subject><subject>patient-specific predictive modeling</subject><subject>Patients</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Tomography, X-Ray Computed</subject><subject>Uncertainty</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV9rFDEUxYMottR-ABFkwJe-zJp_k0lehO1SbaVgQfso4SaTqSkzyZrMiPvtzbDbRc1LQs7vHu69B6HXBK8Iwer958vrmxXFRK2oVAIz_gydUiJkTSmWz5_eRPETdJ7zIy5Hli8lXqIThlvCFROn6PsdTN6Fqf66ddb33lZ3yXXeTj6GKvbV2nRx9AGGah3TVOR1cHPa5bG6-r2FkBfsPvvwUF3CzmUPodrA4E2CxeEVetHDkN354T5D9x-vvm2u69svn24269vact5ONYOmNwANtcJQo1TT4FaQDjPb9YJIIzvHWSvB9aSV2BglOtsYypuOWbC8Z2fow953O5vRdbYMlGDQ2-RHSDsdwet_leB_6If4S5d9YKGaYnBxMEjx5-zypEefrRsGCC7OWVPSKq4klqKg7_5DH-OcyoYKxUhpk2BJC0X2lE0x5-T6YzME6yU_veSnl_z0Ib9S8_bvKY4VT2kV4M0e8M65oywFVapt2R8A6aBL</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhang, Liangliang</creator><creator>Jiang, Zhenxiang</creator><creator>Choi, Jongeun</creator><creator>Lim, Chae Young</creator><creator>Maiti, Tapabrata</creator><creator>Baek, Seungik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7532-5315</orcidid><orcidid>https://orcid.org/0000-0001-5986-2260</orcidid></search><sort><creationdate>20191101</creationdate><title>Patient-Specific Prediction of Abdominal Aortic Aneurysm Expansion Using Bayesian Calibration</title><author>Zhang, Liangliang ; Jiang, Zhenxiang ; Choi, Jongeun ; Lim, Chae Young ; Maiti, Tapabrata ; Baek, Seungik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-3a5fbaa52c6b2b99550761d03cdf618b8de4378aef1780bb96dc5b245d3cac4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abdominal aortic aneurysm (AAA)</topic><topic>Aneurysm</topic><topic>Aneurysms</topic><topic>Aorta</topic><topic>Aortic Aneurysm, Abdominal - diagnostic imaging</topic><topic>Aortic Aneurysm, Abdominal - pathology</topic><topic>Aortic aneurysms</topic><topic>Bayes methods</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>bayesian calibration</topic><topic>Calibration</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>CT scan</topic><topic>Data models</topic><topic>Disease Progression</topic><topic>Expansion</topic><topic>growth and remodeling (G&R) computational model</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Patient-Specific Modeling</topic><topic>patient-specific predictive modeling</topic><topic>Patients</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Tomography, X-Ray Computed</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liangliang</creatorcontrib><creatorcontrib>Jiang, Zhenxiang</creatorcontrib><creatorcontrib>Choi, Jongeun</creatorcontrib><creatorcontrib>Lim, Chae Young</creatorcontrib><creatorcontrib>Maiti, Tapabrata</creatorcontrib><creatorcontrib>Baek, Seungik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liangliang</au><au>Jiang, Zhenxiang</au><au>Choi, Jongeun</au><au>Lim, Chae Young</au><au>Maiti, Tapabrata</au><au>Baek, Seungik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-Specific Prediction of Abdominal Aortic Aneurysm Expansion Using Bayesian Calibration</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>23</volume><issue>6</issue><spage>2537</spage><epage>2550</epage><pages>2537-2550</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Translating recent advances in abdominal aortic aneurysm (AAA) growth and remodeling (G&R) knowledge into a predictive, patient-specific clinical treatment tool requires a major paradigm shift in computational modeling. The objectives of this study are to develop a prediction framework that first calibrates the physical AAA G&R model using patient-specific serial computed tomography (CT) scan images, predicts the expansion of an AAA in the future, and quantifies the associated uncertainty in the prediction. We adopt a Bayesian calibration method to calibrate parameters in the G&R computational model and predict the magnitude of AAA expansion. The proposed Bayesian approach can take different sources of uncertainty; therefore, it is well suited to achieve our aims in predicting the AAA expansion process as well as in computing the propagated uncertainty. We demonstrate how to achieve the proposed aims by solving the formulated Bayesian calibration problems for cases with the synthetic G&R model output data and real medical patient-specific CT data. We compare and discuss the performance of predictions and computation time under different sampling cases of the model output data and patient data, both of which are simulated by the G&R computation. Furthermore, we apply our Bayesian calibration to real patient-specific serial CT data and validate our prediction. The accuracy and efficiency of the proposed method is promising, which appeals to computational and medical communities.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30714936</pmid><doi>10.1109/JBHI.2019.2896034</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7532-5315</orcidid><orcidid>https://orcid.org/0000-0001-5986-2260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2019-11, Vol.23 (6), p.2537-2550 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_30714936 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Abdominal aortic aneurysm (AAA) Aneurysm Aneurysms Aorta Aortic Aneurysm, Abdominal - diagnostic imaging Aortic Aneurysm, Abdominal - pathology Aortic aneurysms Bayes methods Bayes Theorem Bayesian analysis bayesian calibration Calibration Computational modeling Computed tomography Computer applications Computer Simulation CT scan Data models Disease Progression Expansion growth and remodeling (G&R) computational model Humans Image Interpretation, Computer-Assisted - methods Patient-Specific Modeling patient-specific predictive modeling Patients Predictions Predictive models Tomography, X-Ray Computed Uncertainty |
title | Patient-Specific Prediction of Abdominal Aortic Aneurysm Expansion Using Bayesian Calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-Specific%20Prediction%20of%20Abdominal%20Aortic%20Aneurysm%20Expansion%20Using%20Bayesian%20Calibration&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Zhang,%20Liangliang&rft.date=2019-11-01&rft.volume=23&rft.issue=6&rft.spage=2537&rft.epage=2550&rft.pages=2537-2550&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2019.2896034&rft_dat=%3Cproquest_pubme%3E2313781082%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313781082&rft_id=info:pmid/30714936&rft_ieee_id=8629977&rfr_iscdi=true |