Patient-Specific Prediction of Abdominal Aortic Aneurysm Expansion Using Bayesian Calibration

Translating recent advances in abdominal aortic aneurysm (AAA) growth and remodeling (G&R) knowledge into a predictive, patient-specific clinical treatment tool requires a major paradigm shift in computational modeling. The objectives of this study are to develop a prediction framework that firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2019-11, Vol.23 (6), p.2537-2550
Hauptverfasser: Zhang, Liangliang, Jiang, Zhenxiang, Choi, Jongeun, Lim, Chae Young, Maiti, Tapabrata, Baek, Seungik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Translating recent advances in abdominal aortic aneurysm (AAA) growth and remodeling (G&R) knowledge into a predictive, patient-specific clinical treatment tool requires a major paradigm shift in computational modeling. The objectives of this study are to develop a prediction framework that first calibrates the physical AAA G&R model using patient-specific serial computed tomography (CT) scan images, predicts the expansion of an AAA in the future, and quantifies the associated uncertainty in the prediction. We adopt a Bayesian calibration method to calibrate parameters in the G&R computational model and predict the magnitude of AAA expansion. The proposed Bayesian approach can take different sources of uncertainty; therefore, it is well suited to achieve our aims in predicting the AAA expansion process as well as in computing the propagated uncertainty. We demonstrate how to achieve the proposed aims by solving the formulated Bayesian calibration problems for cases with the synthetic G&R model output data and real medical patient-specific CT data. We compare and discuss the performance of predictions and computation time under different sampling cases of the model output data and patient data, both of which are simulated by the G&R computation. Furthermore, we apply our Bayesian calibration to real patient-specific serial CT data and validate our prediction. The accuracy and efficiency of the proposed method is promising, which appeals to computational and medical communities.
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2019.2896034