Quantum coherent control of H 3 + formation in strong fields
Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H from methanol u...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-01, Vol.150 (4), p.044303 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H
from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H
when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO
fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses. |
---|---|
ISSN: | 1089-7690 |
DOI: | 10.1063/1.5070067 |