Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics

Carbon nanozymes are catalytic carbon nanomaterials with intrinsic enzyme-like activities. They are advantageous over their natural counterparts in terms of higher stability, lower preparation cost, and better robustness. However, the peroxidase-like activities of the most developed carbon nanozymes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2019-02, Vol.48 (6), p.1993-1999
Hauptverfasser: Lin, Shichao, Zhang, Yihong, Cao, Wen, Wang, Xiaoyu, Qin, Li, Zhou, Min, Wei, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon nanozymes are catalytic carbon nanomaterials with intrinsic enzyme-like activities. They are advantageous over their natural counterparts in terms of higher stability, lower preparation cost, and better robustness. However, the peroxidase-like activities of the most developed carbon nanozymes were moderate due to the imperfection of active centers and limited tuning strategies. Herein, we designed a novel class of efficient peroxidase-mimicking carbon nanozymes with nitrogen atom doping. The N-doped carbon nanozymes were facilely synthesized by direct pyrolysis of different nucleobases at controlled temperatures without other treatments. A high ratio of nitrogen atoms was doped into the carbon skeleton. For example, 8.77 wt% of N remained in the guanine-derived carbon nanozyme with a pyrolysis temperature of 900 °C. The dominant graphitic N species greatly boosted the peroxidase-like activities of nucleobase-derived carbon nanozymes. Moreover, nucleobases are cheap, abundant, and environmentally friendly. We have demonstrated that nitrogen-rich nucleobases are ideal starting materials for the large-scale and cost-effective synthesis of N-doped carbon nanozymes. The carefully designed N-doped carbon nanozymes with superior activities were further used to construct effective biosensors for bioactive molecules ( i.e. , H 2 O 2 and glucose). Highly sensitive and selective detection of H 2 O 2 and glucose was achieved using the N-doped carbon nanozymes as efficient peroxidase mimics. This study offers an economical and sustainable approach for the scalable preparation of N-doped carbon nanozymes and creates a new path for the rational design of efficient peroxidase-mimicking carbon nanozymes by heteroatom doping. Direct pyrolysis of nucleobases makes highly active nitrogen-doped carbon nanozymes.
ISSN:1477-9226
1477-9234
DOI:10.1039/c8dt04499f