A label-free and highly sensitive DNA biosensor based on the core-shell structured CeO 2 -NR@Ppy nanocomposite for Salmonella detection
A core-shell cerium oxide nanorod@polypyrrole (CeO -NR@Ppy) nanocomposite-based electrochemical DNA biosensor was studied for Salmonella detection. The core-shell CeO -NR@Ppy nanocomposite was prepared by in situ chemical oxidative polymerization of pyrrole monomer on CeO -NRs, which provided a suit...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. C, Materials for biological applications Materials for biological applications, 2019-03, Vol.96, p.790 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A core-shell cerium oxide nanorod@polypyrrole (CeO
-NR@Ppy) nanocomposite-based electrochemical DNA biosensor was studied for Salmonella detection. The core-shell CeO
-NR@Ppy nanocomposite was prepared by in situ chemical oxidative polymerization of pyrrole monomer on CeO
-NRs, which provided a suitable platform for electrochemical DNA biosensor fabrication. The immobilization of ss-DNA sequences onto nanocomposite-coated microelectrode was performed via covalent attachment method. DNA biosensor electrochemical responses were studied by cyclic voltammetry and electrochemical impedance spectroscopy with [Fe (CN)
]
as redox probe. Under optimal conditions, DNA biosensor response showed good linearity in the range of 0.01-0.4 nM with sensitivity of 593.7 Ω·nM
·cm
. The low limit of detection and limit of quantification for the DNA biosensor were 0.084 and 0.28 nM, respectively. The proposed DNA biosensor also showed good results when used in detecting actual Salmonella samples. |
---|---|
ISSN: | 1873-0191 |
DOI: | 10.1016/j.msec.2018.11.059 |