Adsorption of soluble microbial products by sediments
As major precursors of disinfection by-products (DBPs), soluble microbial products (SMPs) generated by sewage discharge can adversely affect drinking water quality. It is essential to understand the adsorption behaviours of SMPs onto sediments and the effect of DBPs formation. In this study, the ads...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2019-03, Vol.169, p.874 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As major precursors of disinfection by-products (DBPs), soluble microbial products (SMPs) generated by sewage discharge can adversely affect drinking water quality. It is essential to understand the adsorption behaviours of SMPs onto sediments and the effect of DBPs formation. In this study, the adsorption ability of sediments was evaluated by adsorption isotherms with respect to temperature and salinity. Adsorption behaviours were investigated using X-ray photoelectron spectroscopy, electron microscopy analysis, and excitation emission matrix fluorescence analysis. Chlorination was also employed to explore the influence of sediment adsorption on drinking water quality. The results indicated that the maximum adsorption potential of sediments to SMPs was 1.60 mg/g, which involved exothermic processes. SMPs adsorption declined with increasing temperature and salinity, and fulvic acid and protein in SMPs were more readily adsorbed on sediments than was humic acid. Correlation analysis results indicated that adsorption behaviours of sediments to SMPs could significantly reduce the generation potential of DBPs (r = 0.882-0.938, p |
---|---|
ISSN: | 1090-2414 |
DOI: | 10.1016/j.ecoenv.2018.11.005 |