Photon catalysis of deuterium iodide photodissociation

A catalyst enhances a reaction pathway without itself being consumed or changed. Recently, there has been growing interest in the concept of "photon catalysis" in which nonresonant photons, which are neither absorbed nor scattered, promote reactions. The driving force behind this effect is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019-07, Vol.21 (26), p.14195-1424
Hauptverfasser: Hilsabeck, Kallie I, Meiser, Jana L, Sneha, Mahima, Balakrishnan, N, Zare, Richard N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A catalyst enhances a reaction pathway without itself being consumed or changed. Recently, there has been growing interest in the concept of "photon catalysis" in which nonresonant photons, which are neither absorbed nor scattered, promote reactions. The driving force behind this effect is the interaction between the strong electric field associated with a pulsed, focused laser and the polarizability of the reacting system. In this study, the effect of near-infrared, nonresonant radiation on the photodissociation of deuterium iodide is demonstrated. We use nanosecond pulses rather than time-resolved spectroscopy to investigate the average effect of the electric field on the branching ratio for forming D + I( 2 P 3/2 ) and D + I( 2 P 1/2 ). Changes in the measured D-atom speeds between field-free and strong-field conditions confirm substantial differences in dissociation dynamics. Both the magnitude and direction of change in the branching ratios are dependent upon the photodissociation wavelength. Experiments and theoretical calculations confirm that the mechanism for photon catalysis under these conditions is dynamic Stark shifting of potential energy surfaces rather than electric-field-induced alignment of reagent molecules. The photodissociation of deuterium iodide is catalyzed by the electric field supplied by nonresonant IR photons.
ISSN:1463-9076
1463-9084
DOI:10.1039/c8cp06107f