Whole-Body 12 C Irradiation Transiently Decreases Mouse Hippocampal Dentate Gyrus Proliferation and Immature Neuron Number, but Does Not Change New Neuron Survival Rate
High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus-a brain structure important in memory-prior work suggests that C does not. However, much abo...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2018-10, Vol.19 (10) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-charge and -energy (HZE) particles comprise space radiation and they pose a challenge to astronauts on deep space missions. While exposure to most HZE particles decreases neurogenesis in the hippocampus-a brain structure important in memory-prior work suggests that
C does not. However, much about
C's influence on neurogenesis remains unknown, including the time course of its impact on neurogenesis. To address this knowledge gap, male mice (9⁻11 weeks of age) were exposed to whole-body
C irradiation 100 cGy (IRR; 1000 MeV/n; 8 kEV/µm) or Sham treatment. To birthdate dividing cells, mice received BrdU i.p. 22 h post-irradiation and brains were harvested 2 h (Short-Term) or three months (Long-Term) later for stereological analysis indices of dentate gyrus neurogenesis. For the Short-Term time point, IRR mice had fewer Ki67, BrdU, and doublecortin (DCX) immunoreactive (+) cells versus Sham mice, indicating decreased proliferation (Ki67, BrdU) and immature neurons (DCX). For the Long-Term time point, IRR and Sham mice had similar Ki67+ and DCX+ cell numbers, suggesting restoration of proliferation and immature neurons 3 months post-
C irradiation. IRR mice had fewer surviving BrdU+ cells versus Sham mice, suggesting decreased cell survival, but there was no difference in BrdU+ cell survival rate when compared within treatment and across time point. These data underscore the ability of neurogenesis in the mouse brain to recover from the detrimental effect of
C exposure. |
---|---|
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms19103078 |