Adaptive Gaussian Process Approximation for Bayesian Inference with Expensive Likelihood Functions

We consider Bayesian inference problems with computationally intensive likelihood functions. We propose a Gaussian process (GP)–based method to approximate the joint distribution of the unknown parameters and the data, built on recent work (Kandasamy, Schneider, & Póczos, ). In particular, we wr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2018-11, Vol.30 (11), p.3072-3094
Hauptverfasser: Wang, Hongqiao, Li, Jinglai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3094
container_issue 11
container_start_page 3072
container_title Neural computation
container_volume 30
creator Wang, Hongqiao
Li, Jinglai
description We consider Bayesian inference problems with computationally intensive likelihood functions. We propose a Gaussian process (GP)–based method to approximate the joint distribution of the unknown parameters and the data, built on recent work (Kandasamy, Schneider, & Póczos, ). In particular, we write the joint density approximately as a product of an approximate posterior density and an exponentiated GP surrogate. We then provide an adaptive algorithm to construct such an approximation, where an active learning method is used to choose the design points. With numerical examples, we illustrate that the proposed method has competitive performance against existing approaches for Bayesian computation.
doi_str_mv 10.1162/neco_a_01127
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30216145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2325093128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-30f52383cbf7b8503b42076c7ca2939b4c2394b5cb168138b257d91fffa4553d3</originalsourceid><addsrcrecordid>eNp1kD1vFDEQhi0EIkego0Yr0VCwMOOPXbs8oiREOgkKkOgs22srDnf2Yu-GhF_PHgkQEFTTPPPMOy8hTxFeIXb0dfIua6MBkfb3yAoFg1ZK-ek-WYFUqu27rj8gj2q9AIAOQTwkBwwodsjFitj1YMYpXvrm1My1RpOa9yU7X2uzHseSr-LOTDGnJuTSvDHX_gdyloIvPjnffI3TeXN8NfpU95JN_Oy38TznoTmZk9tv1sfkQTDb6p_czkPy8eT4w9HbdvPu9OxovWkd53JqGQRBmWTOht5KAcxyCn3nemeoYspyR5niVjiLnUQmLRX9oDCEYLgQbGCH5MWNd4n9ZfZ10rtYnd9uTfJ5rpouvwPHXokFff4XepHnkpZ0mjIqQDGkcqFe3lCu5FqLD3osSx3lWiPofff6bvcL_uxWOtudH37BP8v-HXAX7xz8j2v9D3SPXDKIiJoxwaXSFCjTIDRI_S2Ofzq-A2Uuomk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325093128</pqid></control><display><type>article</type><title>Adaptive Gaussian Process Approximation for Bayesian Inference with Expensive Likelihood Functions</title><source>MIT Press Journals</source><creator>Wang, Hongqiao ; Li, Jinglai</creator><creatorcontrib>Wang, Hongqiao ; Li, Jinglai</creatorcontrib><description>We consider Bayesian inference problems with computationally intensive likelihood functions. We propose a Gaussian process (GP)–based method to approximate the joint distribution of the unknown parameters and the data, built on recent work (Kandasamy, Schneider, &amp; Póczos, ). In particular, we write the joint density approximately as a product of an approximate posterior density and an exponentiated GP surrogate. We then provide an adaptive algorithm to construct such an approximation, where an active learning method is used to choose the design points. With numerical examples, we illustrate that the proposed method has competitive performance against existing approaches for Bayesian computation.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco_a_01127</identifier><identifier>PMID: 30216145</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Adaptive algorithms ; Approximation ; Bayesian analysis ; Density ; Gaussian process ; Machine learning ; Statistical inference</subject><ispartof>Neural computation, 2018-11, Vol.30 (11), p.3072-3094</ispartof><rights>Copyright MIT Press Journals, The Nov 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-30f52383cbf7b8503b42076c7ca2939b4c2394b5cb168138b257d91fffa4553d3</citedby><cites>FETCH-LOGICAL-c448t-30f52383cbf7b8503b42076c7ca2939b4c2394b5cb168138b257d91fffa4553d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco_a_01127$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30216145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hongqiao</creatorcontrib><creatorcontrib>Li, Jinglai</creatorcontrib><title>Adaptive Gaussian Process Approximation for Bayesian Inference with Expensive Likelihood Functions</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>We consider Bayesian inference problems with computationally intensive likelihood functions. We propose a Gaussian process (GP)–based method to approximate the joint distribution of the unknown parameters and the data, built on recent work (Kandasamy, Schneider, &amp; Póczos, ). In particular, we write the joint density approximately as a product of an approximate posterior density and an exponentiated GP surrogate. We then provide an adaptive algorithm to construct such an approximation, where an active learning method is used to choose the design points. With numerical examples, we illustrate that the proposed method has competitive performance against existing approaches for Bayesian computation.</description><subject>Adaptive algorithms</subject><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Density</subject><subject>Gaussian process</subject><subject>Machine learning</subject><subject>Statistical inference</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kD1vFDEQhi0EIkego0Yr0VCwMOOPXbs8oiREOgkKkOgs22srDnf2Yu-GhF_PHgkQEFTTPPPMOy8hTxFeIXb0dfIua6MBkfb3yAoFg1ZK-ek-WYFUqu27rj8gj2q9AIAOQTwkBwwodsjFitj1YMYpXvrm1My1RpOa9yU7X2uzHseSr-LOTDGnJuTSvDHX_gdyloIvPjnffI3TeXN8NfpU95JN_Oy38TznoTmZk9tv1sfkQTDb6p_czkPy8eT4w9HbdvPu9OxovWkd53JqGQRBmWTOht5KAcxyCn3nemeoYspyR5niVjiLnUQmLRX9oDCEYLgQbGCH5MWNd4n9ZfZ10rtYnd9uTfJ5rpouvwPHXokFff4XepHnkpZ0mjIqQDGkcqFe3lCu5FqLD3osSx3lWiPofff6bvcL_uxWOtudH37BP8v-HXAX7xz8j2v9D3SPXDKIiJoxwaXSFCjTIDRI_S2Ofzq-A2Uuomk</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Wang, Hongqiao</creator><creator>Li, Jinglai</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20181101</creationdate><title>Adaptive Gaussian Process Approximation for Bayesian Inference with Expensive Likelihood Functions</title><author>Wang, Hongqiao ; Li, Jinglai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-30f52383cbf7b8503b42076c7ca2939b4c2394b5cb168138b257d91fffa4553d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Density</topic><topic>Gaussian process</topic><topic>Machine learning</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongqiao</creatorcontrib><creatorcontrib>Li, Jinglai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongqiao</au><au>Li, Jinglai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Gaussian Process Approximation for Bayesian Inference with Expensive Likelihood Functions</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>30</volume><issue>11</issue><spage>3072</spage><epage>3094</epage><pages>3072-3094</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>We consider Bayesian inference problems with computationally intensive likelihood functions. We propose a Gaussian process (GP)–based method to approximate the joint distribution of the unknown parameters and the data, built on recent work (Kandasamy, Schneider, &amp; Póczos, ). In particular, we write the joint density approximately as a product of an approximate posterior density and an exponentiated GP surrogate. We then provide an adaptive algorithm to construct such an approximation, where an active learning method is used to choose the design points. With numerical examples, we illustrate that the proposed method has competitive performance against existing approaches for Bayesian computation.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>30216145</pmid><doi>10.1162/neco_a_01127</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2018-11, Vol.30 (11), p.3072-3094
issn 0899-7667
1530-888X
language eng
recordid cdi_pubmed_primary_30216145
source MIT Press Journals
subjects Adaptive algorithms
Approximation
Bayesian analysis
Density
Gaussian process
Machine learning
Statistical inference
title Adaptive Gaussian Process Approximation for Bayesian Inference with Expensive Likelihood Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Gaussian%20Process%20Approximation%20for%20Bayesian%20Inference%20with%20Expensive%20Likelihood%20Functions&rft.jtitle=Neural%20computation&rft.au=Wang,%20Hongqiao&rft.date=2018-11-01&rft.volume=30&rft.issue=11&rft.spage=3072&rft.epage=3094&rft.pages=3072-3094&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/neco_a_01127&rft_dat=%3Cproquest_pubme%3E2325093128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325093128&rft_id=info:pmid/30216145&rfr_iscdi=true