Adaptive Gaussian Process Approximation for Bayesian Inference with Expensive Likelihood Functions

We consider Bayesian inference problems with computationally intensive likelihood functions. We propose a Gaussian process (GP)–based method to approximate the joint distribution of the unknown parameters and the data, built on recent work (Kandasamy, Schneider, & Póczos, ). In particular, we wr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2018-11, Vol.30 (11), p.3072-3094
Hauptverfasser: Wang, Hongqiao, Li, Jinglai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Bayesian inference problems with computationally intensive likelihood functions. We propose a Gaussian process (GP)–based method to approximate the joint distribution of the unknown parameters and the data, built on recent work (Kandasamy, Schneider, & Póczos, ). In particular, we write the joint density approximately as a product of an approximate posterior density and an exponentiated GP surrogate. We then provide an adaptive algorithm to construct such an approximation, where an active learning method is used to choose the design points. With numerical examples, we illustrate that the proposed method has competitive performance against existing approaches for Bayesian computation.
ISSN:0899-7667
1530-888X
DOI:10.1162/neco_a_01127