Observation of topologically protected states at crystalline phase boundaries in single-layer WSe 2

Transition metal dichalcogenide materials are unique in the wide variety of structural and electronic phases they exhibit in the two-dimensional limit. Here we show how such polymorphic flexibility can be used to achieve topological states at highly ordered phase boundaries in a new quantum spin Hal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-08, Vol.9 (1), p.3401
Hauptverfasser: Ugeda, Miguel M, Pulkin, Artem, Tang, Shujie, Ryu, Hyejin, Wu, Quansheng, Zhang, Yi, Wong, Dillon, Pedramrazi, Zahra, Martín-Recio, Ana, Chen, Yi, Wang, Feng, Shen, Zhi-Xun, Mo, Sung-Kwan, Yazyev, Oleg V, Crommie, Michael F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal dichalcogenide materials are unique in the wide variety of structural and electronic phases they exhibit in the two-dimensional limit. Here we show how such polymorphic flexibility can be used to achieve topological states at highly ordered phase boundaries in a new quantum spin Hall insulator (QSHI), 1T'-WSe . We observe edge states at the crystallographically aligned interface between a quantum spin Hall insulating domain of 1T'-WSe and a semiconducting domain of 1H-WSe in contiguous single layers. The QSHI nature of single-layer 1T'-WSe is verified using angle-resolved photoemission spectroscopy to determine band inversion around a 120 meV energy gap, as well as scanning tunneling spectroscopy to directly image edge-state formation. Using this edge-state geometry we confirm the predicted penetration depth of one-dimensional interface states into the two-dimensional bulk of a QSHI for a well-specified crystallographic direction. These interfaces create opportunities for testing predictions of the microscopic behavior of topologically protected boundary states.
ISSN:2041-1723
DOI:10.1038/s41467-018-05672-w