RapidBrachyMCTPS: a Monte Carlo-based treatment planning system for brachytherapy applications

Despite being considered the gold standard for brachytherapy dosimetry, Monte Carlo (MC) has yet to be implemented into a software for brachytherapy treatment planning. The purpose of this work is to present RapidBrachyMCTPS, a novel treatment planning system (TPS) for brachytherapy applications equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2018-08, Vol.63 (17), p.175007-175007
Hauptverfasser: Famulari, Gabriel, Renaud, Marc-André, Poole, Christopher M, Evans, Michael D C, Seuntjens, Jan, Enger, Shirin A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite being considered the gold standard for brachytherapy dosimetry, Monte Carlo (MC) has yet to be implemented into a software for brachytherapy treatment planning. The purpose of this work is to present RapidBrachyMCTPS, a novel treatment planning system (TPS) for brachytherapy applications equipped with a graphical user interface (GUI), optimization tools and a Geant4-based MC dose calculation engine, RapidBrachyMC. Brachytherapy sources and applicators were implemented in RapidBrachyMC and made available to the user via a source and applicator library in the GUI. To benchmark RapidBrachyMC, TG-43 parameters were calculated for the microSelectron v2 (192Ir) and SelectSeed (125I) source models and were compared against previously validated MC brachytherapy codes. The performance of RapidBrachyMC was evaluated for a prostate high dose rate case. To assess the accuracy of RapidBrachyMC in a heterogeneous setup, dose distributions with a cylindrical shielded/unshielded applicator were validated against film measurements in a Solid WaterTM phantom. TG-43 parameters calculated using RapidBrachyMC generally agreed within 1%-2% of the results obtained in previously published work. For the prostate case, clinical dosimetric indices showed general agreement with Oncentra TPS within 1%. Simulation times were on the order of minutes on a single core to achieve uncertainties below 2% in voxels within the prostate. The calculation time was decreased further using the multithreading features of Geant4. In the comparison between MC-calculated and film-measured dose distributions, at least 95% of points passed the 3%/3 mm gamma index criteria in all but one case. RapidBrachyMCTPS can be used as a post-implant dosimetry toolkit, as well as for MC-based brachytherapy treatment planning. This software is especially well suited for the development of new source and applicator models.
ISSN:0031-9155
1361-6560
1361-6560
DOI:10.1088/1361-6560/aad97a