Anodised TiO 2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants

Medical grade titanium alloy is widely used for bone/dental implants, but the material alone has no innate antimicrobial properties that would reduce infection risk following surgery. However, silver nanoparticles (Ag NPs) are known to be antibacterial. This study investigated the growth of Ag NPs o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. C, Materials for biological applications Materials for biological applications, 2018-10, Vol.91, p.638
Hauptverfasser: Gunputh, Urvashi Fowdar, Le, Huirong, Handy, Richard D, Tredwin, Christopher
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medical grade titanium alloy is widely used for bone/dental implants, but the material alone has no innate antimicrobial properties that would reduce infection risk following surgery. However, silver nanoparticles (Ag NPs) are known to be antibacterial. This study investigated the growth of Ag NPs on titanium dioxide nanotubes (TiO NTs) on Ti-6Al-4V discs. The TiO NTs were grown on the Ti alloy using an electrochemical method, and then decorated with Ag NPs. The Ag NPs were synthesised by chemical reduction using δ-gluconolactone. A silver ammonia solution (silver nitrate + liquid ammonia) was used as the source of silver. Two separate approaches were used: (1) The δ-gluconolactone was mixed with the silver ammonia and then exposed to the TiO NTs (the 'mixing method'), which produced micron-sized clusters of the Ag NPs. (2) The TiO NTs were exposed to the silver ammonia first and then to δ-gluconolactone (the 'sequential addition method'), which resulted in the formation of nano-sized clusters of the nanoparticles. The Ag-TiO composites were confirmed by scanning electron microscopy and the elements analysed using energy dispersive X-ray spectroscopy (EDS). The composite coatings were exposed to a simulated body fluid for 24 h in order to determine the total Ag released. The release from the micron-sized clusters from the mixing method (14.6 ± 0.67 ppm) was higher than that from the nano-sized clusters (4.05 ± 0.36 ppm) when 0.015 M of silver ammonia was used. Additionally, Staphylococcus aureus, was cultured on the composite coatings for 24 h. Both the micron- and nano-sized clusters of the Ag NPs were found to be antibacterial using the Live/Dead assay. Overall, δ-gluconolactone was successfully used to reduce silver to Ag NPs on the surface of TiO NTs. The sequential addition method was the preferred method of synthesis because of its slower silver release, better coverage of the Ag-NPs on the TiO NTs and strong antibacterial properties.
ISSN:1873-0191
DOI:10.1016/j.msec.2018.05.074