Deep Learning for Plant Species Classification Using Leaf Vein Morphometric

An automated plant species identification system could help botanists and layman in identifying plant species rapidly. Deep learning is robust for feature extraction as it is superior in providing deeper information of images. In this research, a new CNN-based method named D-Leaf was proposed. The l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2020-01, Vol.17 (1), p.82-90
Hauptverfasser: Tan, Jing Wei, Chang, Siow-Wee, Abdul-Kareem, Sameem, Yap, Hwa Jen, Yong, Kien-Thai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An automated plant species identification system could help botanists and layman in identifying plant species rapidly. Deep learning is robust for feature extraction as it is superior in providing deeper information of images. In this research, a new CNN-based method named D-Leaf was proposed. The leaf images were pre-processed and the features were extracted by using three different Convolutional Neural Network (CNN) models namely pre-trained AlexNet, fine-tuned AlexNet, and D-Leaf. These features were then classified by using five machine learning techniques, namely, Support Vector Machine (SVM), Artificial Neural Network (ANN), k-Nearest-Neighbor (k-NN), Naïve-Bayes (NB), and CNN. A conventional morphometric method computed the morphological measurements based on the Sobel segmented veins was employed for benchmarking purposes. The D-Leaf model achieved a comparable testing accuracy of 94.88 percent as compared to AlexNet (93.26 percent) and fine-tuned AlexNet (95.54 percent) models. In addition, CNN models performed better than the traditional morphometric measurements (66.55 percent). The features extracted from the CNN are found to be fitted well with the ANN classifier. D-Leaf can be an effective automated system for plant species identification as shown by the experimental results.
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2018.2848653