Correlation between S100A11 and the TGF-β 1 /SMAD4 pathway and its effects on the proliferation and apoptosis of pancreatic cancer cell line PANC-1
S100A11 as a S100 protein family member has been documented to play dual-direction regulation over cancer cell proliferation. We explored the role of S100A11 in the proliferation and apoptosis of pancreatic cancer cell line PANC-1 and the potential mechanisms involving the TGF-β /SMAD4/p21 pathway....
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2019-01, Vol.450 (1-2), p.53 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | S100A11 as a S100 protein family member has been documented to play dual-direction regulation over cancer cell proliferation. We explored the role of S100A11 in the proliferation and apoptosis of pancreatic cancer cell line PANC-1 and the potential mechanisms involving the TGF-β
/SMAD4/p21 pathway. S100A11 and TGF-β
protein expressions in 30 paraffin-embedded specimens were evaluated by immunohistochemistry. S100A11 and TGF-β
expression in PANC-1 cell line was suppressed using small interfering RNA (siRNA), respectively. Subsequently, pancreatic cancer cell apoptosis was measured by Cell Counting Kit-8 and flow cytometry, and S100A11 and TGF-β1/SMAD4/p21 pathway proteins and genes were detected with Western blotting and quantitative polymerase chain reaction (qPCR). S100A11 cytoplasmic/nuclear protein translocation was examined using NE-PER® cytoplasm/nuclear protein extraction in cells interfered with TGF-β1 siRNA. Our results showed that S100A11 expression was positively correlated with TGF-β
expression in pancreatic cancerous tissue. Silencing TGF-β
down-regulated intracellular P21
expression by 90%, blocked S100A11 from cytoplasm entering nucleus, and enhanced cell proliferation. Silencing S100A11 down-regulated intracellular P21 expression and promoted cell apoptosis without significantly changing TGF-β
and SMAD4 expression. Our findings revealed that S100A11 and TGF-β
/SMAD4 signaling pathway were related but mutually independent in regulating PANC-1 cells proliferation and apoptosis. Other independent mechanisms might be involved in S100A11's regulation of pancreatic cell growth. S100A11 could be a potential gene therapy target for pancreatic cancer. |
---|---|
ISSN: | 1573-4919 |
DOI: | 10.1007/s11010-018-3372-2 |