Inverse alterations of BCKA dehydrogenase activity in cardiac and skeletal muscles of diabetic rats

Rat cardiac and skeletal muscles, which have been used as model tissues for studies of regulation of branched-chain α-keto acid (BCKA) oxidation, vary greatly in the activity state of their BCKA dehydrogenase. In the present experiment, we have investigated whether they also vary in response of thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism 1999-10, Vol.277 (4), p.E685
Hauptverfasser: Lombardo, Yolanda B, Serdikoff, Cynthia, Thamotharan, Manikkavasagar, Paul, Harbhajan S, Adibi, Siamak A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rat cardiac and skeletal muscles, which have been used as model tissues for studies of regulation of branched-chain α-keto acid (BCKA) oxidation, vary greatly in the activity state of their BCKA dehydrogenase. In the present experiment, we have investigated whether they also vary in response of their BCKA dehydrogenase to a metabolic alteration such as diabetes and, if so, to investigate the mechanism that underlies the difference. Diabetes was produced by depriving streptozotocin-treated rats of insulin administration for 96 h. The investigation of BCKA dehydrogenase in the skeletal muscle (gastrocnemius) showed that diabetes 1) increased its activity, 2) increased the protein and gene expressions of all of its subunits (E α, E β, E ), 3) increased its activity state, 4) decreased the rate of its inactivation, and 5) decreased the protein expression of its associated kinase (BCKAD kinase) without affecting its gene expression. In sharp contrast, the investigation of BCKA dehydrogenase in the cardiac muscle showed that diabetes 1) decreased its activity, 2) had no effect on either protein or gene expression of any of its subunits, 3) decreased its activity state, 4) increased its rate of inactivation, and 5) increased both the protein and gene expressions of its associated kinase. In conclusion, our data suggest that, in diabetes, the protein expression of BCKAD kinase is downregulated posttranscriptionally in the skeletal muscle, whereas it is upregulated pretranslationally in the cardiac muscle, causing inverse alterations of BCKA dehydrogenase activity in these muscles.
ISSN:1522-1555
DOI:10.1152/ajpendo.1999.277.4.E685