Effects of plasma from hibernating ground squirrels on monocyte-endothelial cell adhesive interactions

Adhesion and subsequent penetration of leukocytes into central nervous system ischemic tissue proceeds via a coordinated inflammatory mechanism involving adhesion molecules at the blood-endothelium interface. Mammalian hibernation is a state of natural tolerance to severely reduced blood flow-oxygen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 1997-12, Vol.273 (6), p.R1861
Hauptverfasser: Yasuma, Yoshihide, McCarron, Richard M, Spatz, Maria, Hallenbeck, John M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adhesion and subsequent penetration of leukocytes into central nervous system ischemic tissue proceeds via a coordinated inflammatory mechanism involving adhesion molecules at the blood-endothelium interface. Mammalian hibernation is a state of natural tolerance to severely reduced blood flow-oxygen delivery (i.e., ischemia). Hibernating thirteen-lined ground squirrels were investigated in an attempt to identify factors responsible for regulating this tolerance. Since leukocytopenia is closely associated with entrance into hibernation, the role of leukocyte adhesion to endothelium in this phenomenon was examined. Intercellular adhesion molecule-1 (ICAM-1) is expressed by endothelium and regulates interactions with circulating leukocytes that may result in margination or extravasation. ICAM-1 expression by rat cerebral microvascular endothelial cells (EC) cultured with plasma from hibernating (HP) or nonhibernating (NHP) thirteen-lined ground squirrels was dose dependently increased by HP and, to a lesser extent, by NHP. Treatment of EC with HP coincidentally induced significantly greater increases in monocyte adhesion to EC (37.2%) than were observed with NHP (23.9%). Study of the effects of HP and NHP on monocyte adhesion to EC may identify mechanisms responsible for ischemic tolerance in hibernators and could lead to the development of novel therapeutic approaches to the treatment of stroke.
ISSN:1522-1490
DOI:10.1152/ajpregu.1997.273.6.R1861