Metabolic engineering of Corynebacterium glutamicum for production of sunscreen shinorine

Ultraviolet-absorbing chemicals are useful in cosmetics and skin care to prevent UV-induced skin damage. We demonstrate here that heterologous production of shinorine, which shows broad absorption maxima in the UV-A and UV-B region. A shinorine producing Corynebacterium glutamicum strain was constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2018-07, Vol.82 (7), p.1252-1259
Hauptverfasser: Tsuge, Yota, Kawaguchi, Hideo, Yamamoto, Shogo, Nishigami, Yoshiko, Sota, Masahiro, Ogino, Chiaki, Kondo, Akihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultraviolet-absorbing chemicals are useful in cosmetics and skin care to prevent UV-induced skin damage. We demonstrate here that heterologous production of shinorine, which shows broad absorption maxima in the UV-A and UV-B region. A shinorine producing Corynebacterium glutamicum strain was constructed by expressing four genes from Actinosynnema mirum DSM 43827, which are responsible for the biosynthesis of shinorine from sedoheptulose-7-phosphate in the pentose phosphate pathway. Deletion of transaldolase encoding gene improved shinorine production by 5.2-fold. Among the other genes in pentose phosphate pathway, overexpression of 6-phosphogluconate dehydrogenase encoding gene further increased shinorine production by 60% (19.1 mg/L). The genetic engineering of the pentose phosphate pathway in C. glutamicum improved shinorine production by 8.3-fold in total, and could be applied to produce the other chemicals derived from sedoheptulose-7-phosphate. Microbial production of sunscreen shinorine.
ISSN:0916-8451
1347-6947
DOI:10.1080/09168451.2018.1452602