Direct measurement of individual phonon lifetimes in the clathrate compound Ba 7.81 Ge 40.67 Au 5.33

Engineering lattice thermal conductivity requires to control the heat carried by atomic vibration waves, the phonons. The key parameter for quantifying it is the phonon lifetime, limiting the travelling distance, whose determination is however at the limits of instrumental capabilities. Here, we sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-09, Vol.8 (1), p.491
Hauptverfasser: Lory, Pierre-François, Pailhès, Stéphane, Giordano, Valentina M, Euchner, Holger, Nguyen, Hong Duong, Ramlau, Reiner, Borrmann, Horst, Schmidt, Marcus, Baitinger, Michael, Ikeda, Matthias, Tomeš, Petr, Mihalkovič, Marek, Allio, Céline, Johnson, Mark Robert, Schober, Helmut, Sidis, Yvan, Bourdarot, Frédéric, Regnault, Louis Pierre, Ollivier, Jacques, Paschen, Silke, Grin, Yuri, de Boissieu, Marc
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Engineering lattice thermal conductivity requires to control the heat carried by atomic vibration waves, the phonons. The key parameter for quantifying it is the phonon lifetime, limiting the travelling distance, whose determination is however at the limits of instrumental capabilities. Here, we show the achievement of a direct quantitative measurement of phonon lifetimes in a single crystal of the clathrate Ba Ge Au , renowned for its puzzling 'glass-like' thermal conductivity. Surprisingly, thermal transport is dominated by acoustic phonons with long lifetimes, travelling over distances of 10 to 100 nm as their wave-vector goes from 0.3 to 0.1 Å . Considering only low-energy acoustic phonons, and their observed lifetime, leads to a calculated thermal conductivity very close to the experimental one. Our results challenge the current picture of thermal transport in clathrates, underlining the inability of state-of-the-art simulations to reproduce the experimental data, thus representing a crucial experimental input for theoretical developments.Phonon lifetime is a fundamental parameter of thermal transport however its determination is challenging. Using inelastic neutron scattering and the neutron resonant spin-echo technique, Lory et al. determine the acoustic phonon lifetime in a single crystal of clathrate Ba7.81Ge40.67Au5.33.
ISSN:2041-1723