Preparation of an antibacterial, hydrophilic and photocatalytically active polyacrylic coating using TiO 2 nanoparticles sensitized by graphene oxide
In recent years more attentions have been paid for preparation of coatings with self-cleaning and antibacterial properties. These properties allow the surface to maintain clean and health over long times without any need to cleaning or disinfection. Acrylic coatings are widely used on various surfac...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. C, Materials for biological applications Materials for biological applications, 2017-11, Vol.80, p.642 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years more attentions have been paid for preparation of coatings with self-cleaning and antibacterial properties. These properties allow the surface to maintain clean and health over long times without any need to cleaning or disinfection. Acrylic coatings are widely used on various surfaces such as automotive, structural and furniture which their self-cleaning and antibacterial ability is very important. The aim of this work is the preparation of a polyacrylic based self-cleaning and antibacterial coating by the modification of TiO
as a coating additive. TiO
nanoparticles were sensitized to the visible light irradiation using graphene oxide through the preparation of TiO
/graphene oxide nanocomposite. Graphene oxide was prepared via a modified Hummers method. TiO
/graphene oxide nanocomposite was used as additive in a polyacrylic coating formulation. Hydrophilicity, photocatalytic and antibacterial activities as well as coating stability were evaluated for TiO
/graphene oxide modified polyacrylic coating and compared with that of pristine TiO
modified and unmodified polyacrylic coatings. TiO
/graphene oxide nanocomposite and polyacrylic coating modified by TiO
/graphene oxide additive were characterized using FT-IR, UV-Vis, XRD, and FESEM techniques. The effect of TiO
/graphene oxide composition and its percent in the coating formulation was evaluated on the polyacrylic coating properties. Results showed that polyacrylic coating having 3% W TiO
/graphene oxide nanocomposite additive with TiO
to graphene oxide ratio of 100:20 is the best coating considering most of beneficial features such as high photodecolorization efficiency of organic dye contaminants, high hydrophilicity, and stability in water. According to the results, TiO
is effectively sensitized by graphene oxide and the polyacrylic coating modified by TiO
/graphene oxide nanocomposite shows good photocatalytic activity under visible light irradiation. |
---|---|
ISSN: | 1873-0191 |
DOI: | 10.1016/j.msec.2017.07.004 |