Fabrication of large area flexible nanoplasmonic templates with flow coating

We describe the development of a custom-built two-axis flow coater for the deposition of polymeric nanosphere monolayers that could be used in the fabrication of large area nanoplasmonic films. The technique described here has the capability of depositing large areas (up to 7 in. × 10 in.) of self-a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2017-07, Vol.88 (7), p.073104-073104
Hauptverfasser: Huang, Qian, Devetter, Brent M., Roosendaal, Timothy, LaBerge, Max, Bernacki, Bruce E., Alvine, Kyle J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe the development of a custom-built two-axis flow coater for the deposition of polymeric nanosphere monolayers that could be used in the fabrication of large area nanoplasmonic films. The technique described here has the capability of depositing large areas (up to 7 in. × 10 in.) of self-assembled monolayers of polymeric nanospheres onto polyethylene terephthalate (PET) films. Here, three sets of films consisting of different diameters (ranging from 100 to 300 nm) of polymeric nanospheres were used to demonstrate the capabilities of this instrument. To improve the surface wettability of the PET substrates during wet-deposition, we enhanced the wettability by using a forced air blown-arc plasma treatment system. Both the local microstructure, as confirmed by scanning electron microscopy, describing monolayer and multilayer coverage, and the overall macroscopic uniformity of the resultant nanostructured film were optimized by controlling the relative stage to blade speed and nanosphere concentration. We also show using a smaller nanoparticle template that such monolayers can be used to form nanoplasmonic films. As this flow-coating approach is a scalable technique, large area films such as the ones described here have a variety of crucial emerging applications in areas such as energy, catalysis, and chemical sensing.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4994737