Toward utilization of data for program management and evaluation: quality assessment of five years of health management information system data in Rwanda
Background Health data can be useful for effective service delivery, decision making, and evaluating existing programs in order to maintain high quality of healthcare. Studies have shown variability in data quality from national health management information systems (HMISs) in sub-Saharan Africa whi...
Gespeichert in:
Veröffentlicht in: | Global health action 2014-12, Vol.7 (1), p.25829 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Health data can be useful for effective service delivery, decision making, and evaluating existing programs in order to maintain high quality of healthcare. Studies have shown variability in data quality from national health management information systems (HMISs) in sub-Saharan Africa which threatens utility of these data as a tool to improve health systems. The purpose of this study is to assess the quality of Rwanda's HMIS data over a 5-year period. Methods The World Health Organization (WHO) data quality report card framework was used to assess the quality of HMIS data captured from 2008 to 2012 and is a census of all 495 publicly funded health facilities in Rwanda. Factors assessed included completeness and internal consistency of 10 indicators selected based on WHO recommendations and priority areas for the Rwanda national health sector. Completeness was measured as percentage of non-missing reports. Consistency was measured as the absence of extreme outliers, internal consistency between related indicators, and consistency of indicators over time. These assessments were done at the district and national level. Results Nationally, the average monthly district reporting completeness rate was 98% across 10 key indicators from 2008 to 2012. Completeness of indicator data increased over time: 2008, 88%; 2009, 91%; 2010, 89%; 2011, 90%; and 2012, 95% (p |
---|---|
ISSN: | 1654-9880 |