Proline-rich antimicrobial peptides targeting protein synthesis

Covering: up to 2017 The innate immune system employs a broad array of antimicrobial peptides (AMPs) to attack invading microorganisms. While most AMPs act by permeabilizing the bacterial membrane, specific subclasses of AMPs have been identified that pass through membranes and inhibit bacterial gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural product reports 2017-07, Vol.34 (7), p.72-711
Hauptverfasser: Graf, Michael, Mardirossian, Mario, Nguyen, Fabian, Seefeldt, A. Carolin, Guichard, Gilles, Scocchi, Marco, Innis, C. Axel, Wilson, Daniel N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covering: up to 2017 The innate immune system employs a broad array of antimicrobial peptides (AMPs) to attack invading microorganisms. While most AMPs act by permeabilizing the bacterial membrane, specific subclasses of AMPs have been identified that pass through membranes and inhibit bacterial growth by targeting fundamental intracellular processes. One such subclass is the proline-rich antimicrobial peptides (PrAMPs) that bind to the ribosome and interfere with the process of protein synthesis. A diverse range of PrAMPs have been identified in insects, such as bees, wasps and beetles, and crustaceans, such as crabs, as well as in mammals, such as cows, sheep, goats and pigs. Mechanistically, the best-characterized PrAMPs are the insect oncocins, such as Onc112, and bovine bactenecins, such as Bac7. Biochemical and structural studies have revealed that these PrAMPs bind within the ribosomal exit tunnel with a reverse orientation compared to a nascent polypeptide chain. The PrAMPs allow initiation but prevent the transition into the elongation phase of translation. Insight into the interactions of PrAMPs with their ribosomal target provides the opportunity to further develop these peptides as novel antimicrobial agents. Proline-rich antimicrobial peptides (PrAMPs) bind within the exit tunnel of the ribosome and inhibit translation elongation. Structures of ribosome-bound PrAMPs reveal the interactions with ribosomal components and could pave the way for the development of novel peptide-based antimicrobial agents.
ISSN:0265-0568
1460-4752
DOI:10.1039/c7np00020k