Directed adenine functionalization for creating complex architectures for material and biological applications

In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2017-04, Vol.53 (35), p.4748-4758
Hauptverfasser: Mohapatra, Balaram, Pratibha, Verma, Sandeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4758
container_issue 35
container_start_page 4748
container_title Chemical communications (Cambridge, England)
container_volume 53
creator Mohapatra, Balaram
Pratibha
Verma, Sandeep
description In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications. This feature article outlines design strategies for modified adenine derivatives to construct discrete metal complexes, ring-expanded skeletons, coordination polymers, MOFs, and capped nanoparticles, for applications in gas adsorption, as bioimaging agents and as bioactive molecules.
doi_str_mv 10.1039/c7cc00222j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28393940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1886342492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a5371df458c822ac90e0c2e9c8274a7a7294a5efd4408a67e941eb62da5ccffc3</originalsourceid><addsrcrecordid>eNqFkUuP1DAQhC20iFkGLtwXhRtCCviVxD6uwlsrcQGJW9TTac96lBd2IgG_HmdnGG5sX1wlf12HLsaeCf5acGXfYIXIuZTy8IBdClXqvNDm-8WqC5tXShcb9jjGA08jCvOIbaRRVlnNL9nw1gfCmdoMWhr8QJlbBpz9OEDnf8MqMjeGDAMlM-wzHPupo58ZBLz1c1pdAsU7pIeZgocug6HNdn7sxr3H1U5Tl8QaFZ-whw66SE9P75Z9e__ua_0xv_ny4VN9fZOjKs2cQ6Eq0TpdGDRSAlpOHCXZ5CoNFVTSaijItVpzA2VFVgvalbKFAtE5VFv28pg7hfHHQnFueh-Rug4GGpfYCMu1lEKp8n7UmFJpqa1M6KsjimGMMZBrpuB7CL8awZu1iqau6vquis8Jfn7KXXY9tWf07-0T8OIIhIjn339dNlPrEnP1P0b9Ac9Fm5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886342492</pqid></control><display><type>article</type><title>Directed adenine functionalization for creating complex architectures for material and biological applications</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Mohapatra, Balaram ; Pratibha ; Verma, Sandeep</creator><creatorcontrib>Mohapatra, Balaram ; Pratibha ; Verma, Sandeep</creatorcontrib><description>In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications. This feature article outlines design strategies for modified adenine derivatives to construct discrete metal complexes, ring-expanded skeletons, coordination polymers, MOFs, and capped nanoparticles, for applications in gas adsorption, as bioimaging agents and as bioactive molecules.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c7cc00222j</identifier><identifier>PMID: 28393940</identifier><language>eng</language><publisher>England</publisher><subject>Adenine - chemistry ; Adenine - pharmacology ; Adenines ; Animals ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Architecture ; Biological materials ; Cell Survival - drug effects ; Coordination Complexes - chemical synthesis ; Coordination Complexes - chemistry ; Coordination Complexes - pharmacology ; Coordination compounds ; Derivatives ; Escherichia coli - drug effects ; Humans ; Networks ; Purines ; Strategy</subject><ispartof>Chemical communications (Cambridge, England), 2017-04, Vol.53 (35), p.4748-4758</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a5371df458c822ac90e0c2e9c8274a7a7294a5efd4408a67e941eb62da5ccffc3</citedby><cites>FETCH-LOGICAL-c368t-a5371df458c822ac90e0c2e9c8274a7a7294a5efd4408a67e941eb62da5ccffc3</cites><orcidid>0000-0002-2478-8109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28393940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohapatra, Balaram</creatorcontrib><creatorcontrib>Pratibha</creatorcontrib><creatorcontrib>Verma, Sandeep</creatorcontrib><title>Directed adenine functionalization for creating complex architectures for material and biological applications</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications. This feature article outlines design strategies for modified adenine derivatives to construct discrete metal complexes, ring-expanded skeletons, coordination polymers, MOFs, and capped nanoparticles, for applications in gas adsorption, as bioimaging agents and as bioactive molecules.</description><subject>Adenine - chemistry</subject><subject>Adenine - pharmacology</subject><subject>Adenines</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Architecture</subject><subject>Biological materials</subject><subject>Cell Survival - drug effects</subject><subject>Coordination Complexes - chemical synthesis</subject><subject>Coordination Complexes - chemistry</subject><subject>Coordination Complexes - pharmacology</subject><subject>Coordination compounds</subject><subject>Derivatives</subject><subject>Escherichia coli - drug effects</subject><subject>Humans</subject><subject>Networks</subject><subject>Purines</subject><subject>Strategy</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuP1DAQhC20iFkGLtwXhRtCCviVxD6uwlsrcQGJW9TTac96lBd2IgG_HmdnGG5sX1wlf12HLsaeCf5acGXfYIXIuZTy8IBdClXqvNDm-8WqC5tXShcb9jjGA08jCvOIbaRRVlnNL9nw1gfCmdoMWhr8QJlbBpz9OEDnf8MqMjeGDAMlM-wzHPupo58ZBLz1c1pdAsU7pIeZgocug6HNdn7sxr3H1U5Tl8QaFZ-whw66SE9P75Z9e__ua_0xv_ny4VN9fZOjKs2cQ6Eq0TpdGDRSAlpOHCXZ5CoNFVTSaijItVpzA2VFVgvalbKFAtE5VFv28pg7hfHHQnFueh-Rug4GGpfYCMu1lEKp8n7UmFJpqa1M6KsjimGMMZBrpuB7CL8awZu1iqau6vquis8Jfn7KXXY9tWf07-0T8OIIhIjn339dNlPrEnP1P0b9Ac9Fm5Y</recordid><startdate>20170427</startdate><enddate>20170427</enddate><creator>Mohapatra, Balaram</creator><creator>Pratibha</creator><creator>Verma, Sandeep</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2478-8109</orcidid></search><sort><creationdate>20170427</creationdate><title>Directed adenine functionalization for creating complex architectures for material and biological applications</title><author>Mohapatra, Balaram ; Pratibha ; Verma, Sandeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a5371df458c822ac90e0c2e9c8274a7a7294a5efd4408a67e941eb62da5ccffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenine - chemistry</topic><topic>Adenine - pharmacology</topic><topic>Adenines</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Architecture</topic><topic>Biological materials</topic><topic>Cell Survival - drug effects</topic><topic>Coordination Complexes - chemical synthesis</topic><topic>Coordination Complexes - chemistry</topic><topic>Coordination Complexes - pharmacology</topic><topic>Coordination compounds</topic><topic>Derivatives</topic><topic>Escherichia coli - drug effects</topic><topic>Humans</topic><topic>Networks</topic><topic>Purines</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohapatra, Balaram</creatorcontrib><creatorcontrib>Pratibha</creatorcontrib><creatorcontrib>Verma, Sandeep</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohapatra, Balaram</au><au>Pratibha</au><au>Verma, Sandeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed adenine functionalization for creating complex architectures for material and biological applications</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2017-04-27</date><risdate>2017</risdate><volume>53</volume><issue>35</issue><spage>4748</spage><epage>4758</epage><pages>4748-4758</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications. This feature article outlines design strategies for modified adenine derivatives to construct discrete metal complexes, ring-expanded skeletons, coordination polymers, MOFs, and capped nanoparticles, for applications in gas adsorption, as bioimaging agents and as bioactive molecules.</abstract><cop>England</cop><pmid>28393940</pmid><doi>10.1039/c7cc00222j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2478-8109</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2017-04, Vol.53 (35), p.4748-4758
issn 1359-7345
1364-548X
language eng
recordid cdi_pubmed_primary_28393940
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Adenine - chemistry
Adenine - pharmacology
Adenines
Animals
Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antineoplastic Agents - chemical synthesis
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Architecture
Biological materials
Cell Survival - drug effects
Coordination Complexes - chemical synthesis
Coordination Complexes - chemistry
Coordination Complexes - pharmacology
Coordination compounds
Derivatives
Escherichia coli - drug effects
Humans
Networks
Purines
Strategy
title Directed adenine functionalization for creating complex architectures for material and biological applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20adenine%20functionalization%20for%20creating%20complex%20architectures%20for%20material%20and%20biological%20applications&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Mohapatra,%20Balaram&rft.date=2017-04-27&rft.volume=53&rft.issue=35&rft.spage=4748&rft.epage=4758&rft.pages=4748-4758&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c7cc00222j&rft_dat=%3Cproquest_pubme%3E1886342492%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886342492&rft_id=info:pmid/28393940&rfr_iscdi=true