Directed adenine functionalization for creating complex architectures for material and biological applications
In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, wit...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2017-04, Vol.53 (35), p.4748-4758 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4758 |
---|---|
container_issue | 35 |
container_start_page | 4748 |
container_title | Chemical communications (Cambridge, England) |
container_volume | 53 |
creator | Mohapatra, Balaram Pratibha Verma, Sandeep |
description | In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications.
This feature article outlines design strategies for modified adenine derivatives to construct discrete metal complexes, ring-expanded skeletons, coordination polymers, MOFs, and capped nanoparticles, for applications in gas adsorption, as bioimaging agents and as bioactive molecules. |
doi_str_mv | 10.1039/c7cc00222j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28393940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1886342492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a5371df458c822ac90e0c2e9c8274a7a7294a5efd4408a67e941eb62da5ccffc3</originalsourceid><addsrcrecordid>eNqFkUuP1DAQhC20iFkGLtwXhRtCCviVxD6uwlsrcQGJW9TTac96lBd2IgG_HmdnGG5sX1wlf12HLsaeCf5acGXfYIXIuZTy8IBdClXqvNDm-8WqC5tXShcb9jjGA08jCvOIbaRRVlnNL9nw1gfCmdoMWhr8QJlbBpz9OEDnf8MqMjeGDAMlM-wzHPupo58ZBLz1c1pdAsU7pIeZgocug6HNdn7sxr3H1U5Tl8QaFZ-whw66SE9P75Z9e__ua_0xv_ny4VN9fZOjKs2cQ6Eq0TpdGDRSAlpOHCXZ5CoNFVTSaijItVpzA2VFVgvalbKFAtE5VFv28pg7hfHHQnFueh-Rug4GGpfYCMu1lEKp8n7UmFJpqa1M6KsjimGMMZBrpuB7CL8awZu1iqau6vquis8Jfn7KXXY9tWf07-0T8OIIhIjn339dNlPrEnP1P0b9Ac9Fm5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886342492</pqid></control><display><type>article</type><title>Directed adenine functionalization for creating complex architectures for material and biological applications</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Mohapatra, Balaram ; Pratibha ; Verma, Sandeep</creator><creatorcontrib>Mohapatra, Balaram ; Pratibha ; Verma, Sandeep</creatorcontrib><description>In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications.
This feature article outlines design strategies for modified adenine derivatives to construct discrete metal complexes, ring-expanded skeletons, coordination polymers, MOFs, and capped nanoparticles, for applications in gas adsorption, as bioimaging agents and as bioactive molecules.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c7cc00222j</identifier><identifier>PMID: 28393940</identifier><language>eng</language><publisher>England</publisher><subject>Adenine - chemistry ; Adenine - pharmacology ; Adenines ; Animals ; Anti-Bacterial Agents - chemical synthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Architecture ; Biological materials ; Cell Survival - drug effects ; Coordination Complexes - chemical synthesis ; Coordination Complexes - chemistry ; Coordination Complexes - pharmacology ; Coordination compounds ; Derivatives ; Escherichia coli - drug effects ; Humans ; Networks ; Purines ; Strategy</subject><ispartof>Chemical communications (Cambridge, England), 2017-04, Vol.53 (35), p.4748-4758</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a5371df458c822ac90e0c2e9c8274a7a7294a5efd4408a67e941eb62da5ccffc3</citedby><cites>FETCH-LOGICAL-c368t-a5371df458c822ac90e0c2e9c8274a7a7294a5efd4408a67e941eb62da5ccffc3</cites><orcidid>0000-0002-2478-8109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28393940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohapatra, Balaram</creatorcontrib><creatorcontrib>Pratibha</creatorcontrib><creatorcontrib>Verma, Sandeep</creatorcontrib><title>Directed adenine functionalization for creating complex architectures for material and biological applications</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications.
This feature article outlines design strategies for modified adenine derivatives to construct discrete metal complexes, ring-expanded skeletons, coordination polymers, MOFs, and capped nanoparticles, for applications in gas adsorption, as bioimaging agents and as bioactive molecules.</description><subject>Adenine - chemistry</subject><subject>Adenine - pharmacology</subject><subject>Adenines</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - chemical synthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Architecture</subject><subject>Biological materials</subject><subject>Cell Survival - drug effects</subject><subject>Coordination Complexes - chemical synthesis</subject><subject>Coordination Complexes - chemistry</subject><subject>Coordination Complexes - pharmacology</subject><subject>Coordination compounds</subject><subject>Derivatives</subject><subject>Escherichia coli - drug effects</subject><subject>Humans</subject><subject>Networks</subject><subject>Purines</subject><subject>Strategy</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuP1DAQhC20iFkGLtwXhRtCCviVxD6uwlsrcQGJW9TTac96lBd2IgG_HmdnGG5sX1wlf12HLsaeCf5acGXfYIXIuZTy8IBdClXqvNDm-8WqC5tXShcb9jjGA08jCvOIbaRRVlnNL9nw1gfCmdoMWhr8QJlbBpz9OEDnf8MqMjeGDAMlM-wzHPupo58ZBLz1c1pdAsU7pIeZgocug6HNdn7sxr3H1U5Tl8QaFZ-whw66SE9P75Z9e__ua_0xv_ny4VN9fZOjKs2cQ6Eq0TpdGDRSAlpOHCXZ5CoNFVTSaijItVpzA2VFVgvalbKFAtE5VFv28pg7hfHHQnFueh-Rug4GGpfYCMu1lEKp8n7UmFJpqa1M6KsjimGMMZBrpuB7CL8awZu1iqau6vquis8Jfn7KXXY9tWf07-0T8OIIhIjn339dNlPrEnP1P0b9Ac9Fm5Y</recordid><startdate>20170427</startdate><enddate>20170427</enddate><creator>Mohapatra, Balaram</creator><creator>Pratibha</creator><creator>Verma, Sandeep</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2478-8109</orcidid></search><sort><creationdate>20170427</creationdate><title>Directed adenine functionalization for creating complex architectures for material and biological applications</title><author>Mohapatra, Balaram ; Pratibha ; Verma, Sandeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a5371df458c822ac90e0c2e9c8274a7a7294a5efd4408a67e941eb62da5ccffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenine - chemistry</topic><topic>Adenine - pharmacology</topic><topic>Adenines</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - chemical synthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Architecture</topic><topic>Biological materials</topic><topic>Cell Survival - drug effects</topic><topic>Coordination Complexes - chemical synthesis</topic><topic>Coordination Complexes - chemistry</topic><topic>Coordination Complexes - pharmacology</topic><topic>Coordination compounds</topic><topic>Derivatives</topic><topic>Escherichia coli - drug effects</topic><topic>Humans</topic><topic>Networks</topic><topic>Purines</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohapatra, Balaram</creatorcontrib><creatorcontrib>Pratibha</creatorcontrib><creatorcontrib>Verma, Sandeep</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohapatra, Balaram</au><au>Pratibha</au><au>Verma, Sandeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed adenine functionalization for creating complex architectures for material and biological applications</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2017-04-27</date><risdate>2017</risdate><volume>53</volume><issue>35</issue><spage>4748</spage><epage>4758</epage><pages>4748-4758</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications.
This feature article outlines design strategies for modified adenine derivatives to construct discrete metal complexes, ring-expanded skeletons, coordination polymers, MOFs, and capped nanoparticles, for applications in gas adsorption, as bioimaging agents and as bioactive molecules.</abstract><cop>England</cop><pmid>28393940</pmid><doi>10.1039/c7cc00222j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2478-8109</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-7345 |
ispartof | Chemical communications (Cambridge, England), 2017-04, Vol.53 (35), p.4748-4758 |
issn | 1359-7345 1364-548X |
language | eng |
recordid | cdi_pubmed_primary_28393940 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Adenine - chemistry Adenine - pharmacology Adenines Animals Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antineoplastic Agents - chemical synthesis Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Architecture Biological materials Cell Survival - drug effects Coordination Complexes - chemical synthesis Coordination Complexes - chemistry Coordination Complexes - pharmacology Coordination compounds Derivatives Escherichia coli - drug effects Humans Networks Purines Strategy |
title | Directed adenine functionalization for creating complex architectures for material and biological applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20adenine%20functionalization%20for%20creating%20complex%20architectures%20for%20material%20and%20biological%20applications&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Mohapatra,%20Balaram&rft.date=2017-04-27&rft.volume=53&rft.issue=35&rft.spage=4748&rft.epage=4758&rft.pages=4748-4758&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c7cc00222j&rft_dat=%3Cproquest_pubme%3E1886342492%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886342492&rft_id=info:pmid/28393940&rfr_iscdi=true |