Directed adenine functionalization for creating complex architectures for material and biological applications
In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, wit...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2017-04, Vol.53 (35), p.4748-4758 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications.
This feature article outlines design strategies for modified adenine derivatives to construct discrete metal complexes, ring-expanded skeletons, coordination polymers, MOFs, and capped nanoparticles, for applications in gas adsorption, as bioimaging agents and as bioactive molecules. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/c7cc00222j |