Detection and characterization of ciRS-7: a potential promoter of the development of cancer
Circular RNAs (circRNAs) are a class of newly-identified non-coding RNA molecules. CircRNAs are conserved across different species and display specific organization, sequence, and expression in disease. Moreover, circRNAs' closed ring structure, insensitivity to RNase, and stability are advanta...
Gespeichert in:
Veröffentlicht in: | Neoplasma 2017, Vol.64 (3), p.321-328 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Circular RNAs (circRNAs) are a class of newly-identified non-coding RNA molecules. CircRNAs are conserved across different species and display specific organization, sequence, and expression in disease. Moreover, circRNAs' closed ring structure, insensitivity to RNase, and stability are advantages over linear RNAs in terms of development and application as a new kind of clinical marker. In addition, according to recent studies, circular RNA-7 (ciRS-7) acts as a sponge of miR-7 and thus inhibits its activity. Numerous evidences have confirmed expression of miR-7 is dysregulated in cancer tissues, however, whether ciRS-7 invovled in oncogenesis by acting as sponge of miR-7 remains unclear. Most recently, a study reported ciRS-7 acted as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. This suggest ciRS-7/ miR-7 axis affects oncogenesis, and it provides a new perspective on the mechanisms of decreased miR-7 expression in cancer tissues. Discovery of sponge role of circRNAs caused researchers to more closely explore the underlying mechanism of carcinogenesis and has significant clinical implications, and may open a new chapter in research on the pathology and treatment of cancers. This review summarizes the structure and function of circRNAs and provides evidence for the impact of ciRS-7 in promoting the development of cancer by acting as sponge of miR-7. |
---|---|
ISSN: | 0028-2685 1338-4317 1338-4317 |
DOI: | 10.4149/neo_2017_301 |