PSPEL: In Silico Prediction of Self-Interacting Proteins from Amino Acids Sequences Using Ensemble Learning

Self interacting proteins (SIPs) play an important role in various aspects of the structural and functional organization of the cell. Detecting SIPs is one of the most important issues in current molecular biology. Although a large number of SIPs data has been generated by experimental methods, wet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2017-09, Vol.14 (5), p.1165-1172
Hauptverfasser: Li, Jian-Qiang, You, Zhu-Hong, Li, Xiao, Ming, Zhong, Chen, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self interacting proteins (SIPs) play an important role in various aspects of the structural and functional organization of the cell. Detecting SIPs is one of the most important issues in current molecular biology. Although a large number of SIPs data has been generated by experimental methods, wet laboratory approaches are both time-consuming and costly. In addition, they yield high false negative and positive rates. Thus, there is a great need for in silico methods to predict SIPs accurately and efficiently. In this study, a new sequence-based method is proposed to predict SIPs. The evolutionary information contained in Position-Specific Scoring Matrix (PSSM) is extracted from of protein with known sequence. Then, features are fed to an ensemble classifier to distinguish the self-interacting and non-self-interacting proteins. When performed on Saccharomyces cerevisiae and Human SIPs data sets, the proposed method can achieve high accuracies of 86.86 and 91.30 percent, respectively. Our method also shows a good performance when compared with the SVM classifier and previous methods. Consequently, the proposed method can be considered to be a novel promising tool to predict SIPs.
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2017.2649529