In Vivo Assessment of Brainstem Depigmentation in Parkinson Disease: Potential as a Severity Marker for Multicenter Studies
Purpose To investigate the pattern of neuromelanin signal intensity loss within the substantia nigra pars compacta (SNpc), locus coeruleus, and ventral tegmental area in Parkinson disease (PD); the specific aims were (a) to study regional magnetic resonance (MR) quantifiable depigmentation in associ...
Gespeichert in:
Veröffentlicht in: | Radiology 2017-06, Vol.283 (3), p.789 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose To investigate the pattern of neuromelanin signal intensity loss within the substantia nigra pars compacta (SNpc), locus coeruleus, and ventral tegmental area in Parkinson disease (PD); the specific aims were (a) to study regional magnetic resonance (MR) quantifiable depigmentation in association with PD severity and (b) to investigate whether imaging- and platform-dependent signal intensity variations can be normalized. Materials and Methods This prospective case-control study was approved by the local ethics committee and the research department of Nottingham University Hospitals. Written informed consent was obtained from all participants before enrollment in the study. Sixty-nine participants (39 patients with PD and 30 control subjects) were investigated with neuromelanin-sensitive MR imaging by using two different 3-T platforms and three differing protocols. Neuromelanin-related volumes of the anterior and posterior SNpc, locus coeruleus, and ventral tegmental area were determined, and normalized neuromelanin volumes were assessed for protocol-dependent effects. Diagnostic test performance of normalized neuromelanin volume was investigated by using receiver operating characteristic analyses, and correlations with the Unified Parkinson's Disease Rating Scale scores were tested. Results Reduction of normalized neuromelanin volume in PD was most pronounced in the posterior SNpc (median, -83%; P < .001), followed by the anterior SNpc (-49%; P < .001) and the locus coeruleus (-37%; P < .05). Normalized neuromelanin volume loss of the posterior and whole SNpc allowed the best differentiation of patients with PD and control subjects (area under the receiver operating characteristic curve, 0.92 and 0.88, respectively). Normalized neuromelanin volume of the anterior, posterior, and whole SNpc correlated with Unified Parkinson's Disease Rating Scale scores (r
= 0.25, 0.22, and 0.28, respectively; all P < .05). Conclusion PD-induced neuromelanin loss can be quantified across imaging protocols and platforms by using appropriate adjustment. Depigmentation in PD follows a distinct spatial pattern, affords high diagnostic accuracy, and is associated with disease severity.
RSNA, 2016 Online supplemental material is available for this article. |
---|---|
ISSN: | 1527-1315 |
DOI: | 10.1148/radiol.2016160662 |