Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn 2 SiO 4 bioceramic nanoparticles

Tissue engineering has attracted a great deal of interest by combining fibrous scaffolds and stem cells regarding bone regeneration applications. In the present study, polymeric fibrous polyethersulphone-polyethylene glycol (PES-PEG) was fabricated by electrospinning. It was then treated with NH pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differentiation (London) 2016-10, Vol.92 (4), p.148
Hauptverfasser: Amiri, Bahram, Ghollasi, Marzieh, Shahrousvand, Mohsen, Kamali, Mehdi, Salimi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tissue engineering has attracted a great deal of interest by combining fibrous scaffolds and stem cells regarding bone regeneration applications. In the present study, polymeric fibrous polyethersulphone-polyethylene glycol (PES-PEG) was fabricated by electrospinning. It was then treated with NH plasma to enhance surface hydrophilicity, cell attachment, growth and differentiation potential. X-ray photoelectron spectroscopy (XPS) measurements were used to evaluate the modification of the scaffold's surface chemistry. Electrospun scaffolds were coated with willemite (Zn SiO ) bioceramic nanoparticles. Scaffold characterization was done by scanning electron microscope (SEM), differential scanning calorimetry (DSC), contact angle measurements and tensile analysis. MTT assay was used to assess the biocompatibility of fibrous scaffolds loaded with Zn SiO regarding proliferation support. Osteogenic differentiation of cultured human mesenchymal stem cells (hMSCs) on fibers was evaluated using common osteogenic markers such as alkaline phosphatase (ALP) activity, calcium mineral deposition, quantitative real-time PCR (qPCR) and immunocytochemical analysis (ICC). According to the results, proliferation and osteogenic differentiation of hMSCs were significantly enhanced after coating Zn SiO on fibrous scaffolds. These results were detected by higher ALP activity, biomineralization and expression of osteogenic related genes and proteins in differentiated hMSCs. In conclusion, our results indicated that the combination of Zn SiO nanoparticles and electrospun fibers is able to provide a new, suitable and more efficient matrix to support stem cells differentiation for bone tissue engineering applications.
ISSN:1432-0436