A self-consistent GW approach to the van der Waals potential for a helium dimer
van der Waals interaction between two helium (He) atoms is studied by calculating the total energy as a function of the He-He distance within the self-consistent GW approximation, which is expected to behave correctly in the long wavelength limit. In the Born-Oppenheimer (BO) approximation, the pair...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016-01, Vol.18 (35), p.24477-24483 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | van der Waals interaction between two helium (He) atoms is studied by calculating the total energy as a function of the He-He distance within the self-consistent GW approximation, which is expected to behave correctly in the long wavelength limit. In the Born-Oppenheimer (BO) approximation, the pair potential curve has its minimum value at 2.87 Å, which is somewhat larger than the local density approximation result, 2.40 Å, and is closer to previous quantum chemistry results. The expectation value for the interatomic distance, calculated by solving the Schrödinger equation for the two nuclei problem using the BO potential energy curve, is 30 Å, which is smaller but of the same order as previous experimental and theoretical results.
The harmonic approximation breaks down in the GW approximation and a very long tail appears in the He-He nuclear probability density. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c6cp04678a |