Preparation of benznidazole pellets for immediate drug delivery using the extrusion spheronization technique

Recent advances in the treatment of Chagas disease have followed combinations of drugs that act synergistically against infection, predominantly including benznidazole (BNZ) and azoles derivatives. Possible incompatibilities between these drugs, slow dissolution of BNZ and dose adjustment difficulti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug development and industrial pharmacy 2017-05, Vol.43 (5), p.762-769
Hauptverfasser: Alves-Silva, Ihatanderson, Marreto, Ricardo N., Gelfuso, Guilherme M., Sá-Barreto, Lívia C. L., Lima, Eliana M., Cunha-Filho, Marcílio S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in the treatment of Chagas disease have followed combinations of drugs that act synergistically against infection, predominantly including benznidazole (BNZ) and azoles derivatives. Possible incompatibilities between these drugs, slow dissolution of BNZ and dose adjustment difficulties are technological obstacles to the development of multidrug formulations. Thus, in the present study, BNZ pellets were developed using extrusion spheronization for immediate drug delivery. Preformulation studies were then performed using thermal analysis and infrared spectroscopy and compatibility between the drug and selected excipients (polyethylene glycol 6000, sodium starch glycolate, microcrystalline cellulose and sodium croscarmellose) was investigated. No chemical decomposition of BNZ was observed, even in samples submitted to wet granulation and thermal stress. Subsequently, formulations were elaborated according to a simplex lattice experimental design using polyethylene glycol, sodium starch glycolate and sodium croscarmellose as disintegrating agents. In these experiments, BNZ pellets showed appropriate physicochemical characteristics, including high drug load capacity and excellent flow properties. The mixture experimental design allowed identification of adequate compositions of disintegrating agents and achieved rapid disintegration and dissolution of pellets. Optimum performance was achieved using polyethylene glycol and sodium croscarmellose at 5.0% w/w each. The present BNZ pellets are versatile alternatives to treat Chagas disease and provide insights into the preparation of multidrug systems.
ISSN:0363-9045
1520-5762
DOI:10.1080/03639045.2016.1220574