Visual Quality Enhancement in Optoacoustic Tomography Using Active Contour Segmentation Priors

Segmentation of biomedical images is essential for studying and characterizing anatomical structures as well as for detection and evaluation of tissue pathologies. Segmentation has been further shown to enhance the reconstruction performance in many tomographic imaging modalities by accounting for h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2016-10, Vol.35 (10), p.2209-2217
Hauptverfasser: Mandal, Subhamoy, Dean-Ben, Xose Luis, Razansky, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Segmentation of biomedical images is essential for studying and characterizing anatomical structures as well as for detection and evaluation of tissue pathologies. Segmentation has been further shown to enhance the reconstruction performance in many tomographic imaging modalities by accounting for heterogeneities in the excitation field and tissue properties in the imaged region. This is particularly relevant in optoacoustic tomography, where discontinuities in the optical and acoustic tissue properties, if not properly accounted for, may result in deterioration of the imaging performance. Efficient segmentation of optoacoustic images is often hampered by the relatively low intrinsic contrast of large anatomical structures, which is further impaired by the limited angular coverage of some commonly employed tomographic imaging configurations. Herein, we analyze the performance of active contour models for boundary segmentation in cross-sectional optoacoustic tomography. The segmented mask is employed to construct a two compartment model for the acoustic and optical parameters of the imaged tissues, which is subsequently used to improve accuracy of the image reconstruction routines. The performance of the suggested segmentation and modeling approach are showcased in tissue-mimicking phantoms and small animal imaging experiments.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2016.2553156