Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe–2S cluster

Cleavage and polyadenylation specificity factor 30 (CPSF30) is a key protein involved in pre-mRNA processing. CPSF30 contains five Cys₃His domains (annotated as “zinc-finger” domains). Using inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, and UV-visible spectroscopy, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-04, Vol.113 (17), p.4700-4705
Hauptverfasser: Shimberg, Geoffrey D., Michalek, Jamie L., Oluyadi, Abdulafeez A., Rodrigues, Andria V., Zucconi, Beth E., Neu, Heather M., Ghosh, Shanchari, Sureschandra, Kanisha, Wilson, Gerald M., Stemmler, Timothy L., Michel, Sarah L. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cleavage and polyadenylation specificity factor 30 (CPSF30) is a key protein involved in pre-mRNA processing. CPSF30 contains five Cys₃His domains (annotated as “zinc-finger” domains). Using inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, and UV-visible spectroscopy, we report that CPSF30 is isolated with iron, in addition to zinc. Iron is present in CPSF30 as a 2Fe–2S cluster and uses one of the Cys₃His domains; 2Fe–2S clusters with a Cys₃His ligand set are rare and notably have also been identified in MitoNEET, a protein that was also annotated as a zinc finger. These findings support a role for iron in some zinc-finger proteins. Using electrophoretic mobility shift assays and fluorescence anisotropy, we report that CPSF30 selectively recognizes the AU-rich hexamer (AAUAAA) sequence present in pre-mRNA, providing the first molecular-based evidence to our knowledge for CPSF30/RNA binding. Removal of zinc, or both zinc and iron, abrogates binding, whereas removal of just iron significantly lessens binding. From these data we propose a model for RNA recognition that involves a metaldependent cooperative binding mechanism.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1517620113