One step antibody-mediated isolation and patterning of multiple cell types in microfluidic devices

Cell-cell interactions play a key role in regeneration, differentiation, and basic tissue function taking place under physiological shear forces. However, current solutions to mimic such interactions by micro-patterning cells within microfluidic devices have low resolution, high fabrication complexi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomicrofluidics 2016-03, Vol.10 (2), p.024112-024112
Hauptverfasser: Bavli, Danny, Ezra, Elishai, Kitsberg, Daniel, Vosk-Artzi, Margarita, Murthy, Shashi K., Nahmias, Yaakov
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell-cell interactions play a key role in regeneration, differentiation, and basic tissue function taking place under physiological shear forces. However, current solutions to mimic such interactions by micro-patterning cells within microfluidic devices have low resolution, high fabrication complexity, and are limited to one or two cell types. Here, we present a microfluidic platform capable of laminar patterning of any biotin-labeled peptide using streptavidin-based surface chemistry. The design permits the generation of arbitrary cell patterns from heterogeneous mixtures in microfluidic devices. We demonstrate the robust co-patterning of α-CD24, α-ASGPR-1, and α-Tie2 antibodies for rapid isolation and co-patterning of mixtures of hepatocytes and endothelial cells. In addition to one-step isolation and patterning, our design permits step-wise patterning of multiple cell types and empty spaces to create complex cellular geometries in vitro. In conclusion, we developed a microfluidic device that permits the generation of perfusable tissue-like patterns in microfluidic devices by directly injecting complex cell mixtures such as differentiated stem cells or tissue digests with minimal sample preparation.
ISSN:1932-1058
1932-1058
DOI:10.1063/1.4944741