White adipose tissue urea cycle activity is not affected by one-month treatment with a hyperlipidic diet in female rats

Under high-energy diets, amino acid N is difficult to dispose of, as a consequence of the availability of alternative substrates. We found, recently, that WAT contains a complete functional urea cycle, we analyzed the possible overall changes in the WAT urea cycle (and other-related amino acid metab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food & function 2016-03, Vol.7 (3), p.1554-1563
Hauptverfasser: Arriarán, Sofía, Agnelli, Silvia, Remesar, Xavier, Alemany, Marià, Fernández-López, José Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under high-energy diets, amino acid N is difficult to dispose of, as a consequence of the availability of alternative substrates. We found, recently, that WAT contains a complete functional urea cycle, we analyzed the possible overall changes in the WAT urea cycle (and other-related amino acid metabolism gene expressions) in rats subjected to a cafeteria diet. Adult female Wistar rats were fed control or simplified cafeteria diets. Samples of WAT sites: mesenteric, periovaric, retroperitoneal and subcutaneous, were used for the estimation of all urea cycle enzyme activities and gene expressions. Other key amino acid metabolism gene expressions, and lactate dehydrogenase were also measured. Subcutaneous WAT showed a differentiated amino acid metabolism profile, since its cumulative (whole site) activity for most enzymes was higher than the activities of the other sites studied. After one month of eating an energy-rich cafeteria diet, and in spite of doubling the size of WAT, the transforming capacity of most amino acid metabolism enzymes remained practically unchanged in the tissue. This was not only due to limited changes in the overall enzyme activity, but also a consequence of a relative decrease in the expression of the corresponding genes. Overall, the results of this study support the consideration of WAT as an organ, disperse but under uniform control. The metabolic peculiarities between its different sites, and their ability to adapt to different energy availability conditions only add to the variable nature of adipose tissue. We have presented additional evidence of the significant role of WAT in amino acid metabolism. Under high-energy diets, amino acid N is difficult to dispose of, as a consequence of the availability of alternative substrates.
ISSN:2042-6496
2042-650X
DOI:10.1039/c5fo01503k