Analyzing a fractal gel of charged oblate nanoparticles in a suspension using time-resolved rheometry and DLVO theory
The disk-like nanoparticles of LAPONITE® are known to self-assemble to form a fractal gel within hours after a sufficiently large concentration of LAPONITE® is dispersed in water containing salt. The concentration of sodium counterions associated with LAPONITE® particles, however, continues to incre...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2016-01, Vol.186, p.199-213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The disk-like nanoparticles of LAPONITE® are known to self-assemble to form a fractal gel within hours after a sufficiently large concentration of LAPONITE® is dispersed in water containing salt. The concentration of sodium counterions associated with LAPONITE® particles, however, continues to increase over a period of days, suggesting that delamination of LAPONITE® disks from stacks is sluggish and/or dissociation of counterions is slow. In either case, spontaneous self-assembly of LAPONITE® particles occurs even though delamination and/or counterion dissociation has not reached its equilibrium state. In order to determine the nature of the fractal gel as the extent of delamination and/or dissociation progresses towards equilibrium, we subject the LAPONITE® suspension to a freezing-defrosting cycle, which interestingly reinitiates the gelation process in suspension afresh. Application of time-resolved rheometry to a defrosted suspension shows that iso-frequency loss tangent curves intersect at an identical point, validating the Winter-Chambon criterion for a critical fractal gel state. Interestingly, while the time required to form a critical gel is observed to decrease with increased time elapsed since preparation, at which freezing-defrosting is carried out, the fractal dimension of the critical gel is observed to remain unaffected. We also solve DLVO theory for free energy interactions between the negatively charged LAPONITE® particle faces and analyze the observed phenomena. |
---|---|
ISSN: | 1359-6640 1364-5498 |
DOI: | 10.1039/c5fd00128e |