9‑Glutathionyl-6,7-dihydro-1-hydroxymethyl‑5H‑pyrrolizine Is the Major Pyrrolic Glutathione Conjugate of Retronecine-Type Pyrrolizidine Alkaloids in Liver Microsomes and in Rats

Retronecine-, otonecine-, and heliotridine-type pyrrolizidine alkaloids (PAs) are all reported to be hepatotoxic. These PAs are suggested to be metabolized to the corresponding electrophilic dehydropyrrolizidine alkaloids (dehydro-PAs) and subsequently conjugated with macromolecules, such as glutath...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in toxicology 2016-02, Vol.29 (2), p.180-189
Hauptverfasser: Chen, Meixia, Li, Liang, Zhong, Dafang, Shen, Shuijie, Zheng, Jiang, Chen, Xiaoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retronecine-, otonecine-, and heliotridine-type pyrrolizidine alkaloids (PAs) are all reported to be hepatotoxic. These PAs are suggested to be metabolized to the corresponding electrophilic dehydropyrrolizidine alkaloids (dehydro-PAs) and subsequently conjugated with macromolecules, such as glutathione (GSH). In the present study, a total of five glutathione conjugates, named M1–M5, were detected in rat and human liver microsomal incubations with three retrornecine-type PAs (isoline, retrorsine, or monocrotaline) in the presence of glutathione, and were chemically synthesized. M1 and M3 were unambiguously identified as a pair of epimers of 7-glutathionyl-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (7-GSH-DHP), and M4 and M5 were epimers of 7,9-diglutathionyl-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (7,9-diGSH-DHP). M2, an extremely unstable conjugate, was proposed to be 9-glutathionyl-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine (9-GSH-DHP). It was the most abundant among the five GSH conjugates, and the finding corrects the mistake that 7-GSH-DHP is the predominant GSH conjugate derived from dehydro-PAs. Similar patterns in glutathione conjugate profile were observed in the bile of rats treated with the PAs. This is the first study to describe 9-GSH-DHP as a major pyrrolic GSH conjugate of retronecine-type PAs, providing insight into the interactions of dehydro-PAs with biomolecules.
ISSN:0893-228X
1520-5010
DOI:10.1021/acs.chemrestox.5b00427