Determination of continuous complex refractive index dispersion of biotissue based on internal reflection

The complex refractive index dispersion (CRID), which contains the information on the refractive index dispersion and extinction coefficient spectra, is an important optical parameter of biotissue. However, it is hard to perform the CRID measurement on biotissues due to their high scattering propert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2016-01, Vol.21 (1), p.015003-015003
Hauptverfasser: Deng, Zhichao, Wang, Jin, Ye, Qing, Sun, Tengqian, Zhou, Wenyuan, Mei, Jianchun, Zhang, Chunping, Tian, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complex refractive index dispersion (CRID), which contains the information on the refractive index dispersion and extinction coefficient spectra, is an important optical parameter of biotissue. However, it is hard to perform the CRID measurement on biotissues due to their high scattering property. Continuous CRID measurement based on internal reflection (CCRIDM-IR) is introduced. By using a lab-made apparatus, internal reflectance spectra of biotissue samples at multiple incident angles were detected, from which the continuous CRIDs were calculated based on the Fresnel formula. Results showed that in 400- to 750-nm range, hemoglobin solution has complicated dispersion and extinction coefficient spectra, while other biotissues have normal dispersion properties, and their extinction coefficients do not vary much with different wavelengths. The normal dispersion can be accurately described by several coefficients of dispersion equations (Cauchy equation, Cornu equation, and Conrady equation). To our knowledge, this is the first time that the continuous CRID of scattering biotissue over a continuous spectral region is measured, and we hereby have proven that CCRIDM-IR is a good method for continuous CRID research of biotissue.
ISSN:1083-3668
1560-2281
DOI:10.1117/1.JBO.21.1.015003