A Decomposition Framework for Image Denoising Algorithms

In this paper, we consider an image decomposition model that provides a novel framework for image denoising. The model computes the components of the image to be processed in a moving frame that encodes its local geometry (directions of gradients and level lines). Then, the strategy we develop is to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2016-01, Vol.25 (1), p.388-399
Hauptverfasser: Ghimpeteanu, Gabriela, Batard, Thomas, Bertalmio, Marcelo, Levine, Stacey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider an image decomposition model that provides a novel framework for image denoising. The model computes the components of the image to be processed in a moving frame that encodes its local geometry (directions of gradients and level lines). Then, the strategy we develop is to denoise the components of the image in the moving frame in order to preserve its local geometry, which would have been more affected if processing the image directly. Experiments on a whole image database tested with several denoising methods show that this framework can provide better results than denoising the image directly, both in terms of Peak signal-to-noise ratio and Structural similarity index metrics.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2015.2498413