Compressed image quality metric based on perceptually weighted distortion

Objective quality assessment for compressed images is critical to various image compression systems that are essential in image delivery and storage. Although the mean squared error (MSE) is computationally simple, it may not be accurate to reflect the perceptual quality of compressed images, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2015-12, Vol.24 (12), p.5594-5608
Hauptverfasser: Sudeng Hu, Lina Jin, Hanli Wang, Yun Zhang, Sam Kwong, Kuo, C.-C Jay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective quality assessment for compressed images is critical to various image compression systems that are essential in image delivery and storage. Although the mean squared error (MSE) is computationally simple, it may not be accurate to reflect the perceptual quality of compressed images, which is also affected dramatically by the characteristics of human visual system (HVS), such as masking effect. In this paper, an image quality metric (IQM) is proposed based on perceptually weighted distortion in terms of the MSE. To capture the characteristics of HVS, a randomness map is proposed to measure the masking effect and a preprocessing scheme is proposed to simulate the processing that occurs in the initial part of HVS. Since the masking effect highly depends on the structural randomness, the prediction error from neighborhood with a statistical model is used to measure the significance of masking. Meanwhile, the imperceptible signal with high frequency could be removed by preprocessing with low-pass filters. The relation is investigated between the distortions before and after masking effect, and a masking modulation model is proposed to simulate the masking effect after preprocessing. The performance of the proposed IQM is validated on six image databases with various compression distortions. The experimental results show that the proposed algorithm outperforms other benchmark IQMs.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2015.2481319